
Mapper’s Guide for

Electronic Commerce Processing Node

Version 2.2

May 1999

Inter-National Research Institute, Inc.
12350 Jefferson Avenue, Suite 400

Newport News, Virginia 23602

Mapper’s Guide for ECPN Version 2.2

he first

der the
The following trademarks and registered trademarks are mentioned in this document. Within the text of this
document, the appropriate symbol for a trademark (™) or a registered trademark (®) appears after t
occurrence of each item.

Mercator is a registered trademark of TSI International Software Ltd.

Copyright © 1999
Inter-National Research Institute, Inc.

All Rights Reserved

This material may be reproduced by or for the U.S. Government pursuant to the copyright license un
clause at DFARS 252.227-7013 (NOV 1995).

Mapper’s Guide

Contents

1.0 Document Overview 1

2.0 Referenced Documents 2

3.0 Translation Overview 3

3.1 Transaction Types 4
3.2 Maps 5
3.3 ECPN Translation Programs 7
3.4 UDF-to-X12 Translation Basics 7

3.4.1 X12 Envelope Information 8
3.4.2 Envelope Value Generation 9

3.4.2.1 Values from Message Content 9
3.4.2.2 Values from Databases that Support Translation 10
3.4.2.3 Values from Look-up Tables 10

3.5 X12-to-UDF Translation Basics 11
3.6 Processing Flow 11

3.6.1 UDF to X12 11
3.6.2 X12 to UDF 12

3.7 Admin Message Processing 12
3.8 Translation Toolbox 13

4.0 Type Tree Construction 14

4.1 Document Overview 14
4.1.1 ANSI ASC X12 Document 14
4.1.2 Implementation Conventions (IC) 14
4.1.3 Part 10 15
4.1.4 UDF Specifications 15

4.2 Creating X12 Type Trees 15
4.3 Creating UDF Type Trees 20
4.4 Creating Other Type Trees 25

4.4.1 Acknowledgments 25
4.4.2 Premap Type Trees 33
4.4.3 Additional Input Look-up Table Type Trees 34
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 i

M APPER’ S GUIDE
5.0 Map Construction 35

5.1 Translating UDF to X12 35
5.1.1 Map Naming Conventions 35
5.1.2 ISA Segment 36
5.1.3 GS Segment 37
5.1.4 Audit Settings 37

5.2 Translating X12 to UDF 38
5.2.1 Map Naming Conventions 38

5.3 Building the Premap(s) 39
5.3.1 The Premap1 Stage 39
5.3.2 The Premap Stage 39

5.3.2.1 The Premap Index Output File 39
5.3.2.2 The Premap UDF Output File 39

6.0 Addressing Procedures 40

6.1 Implicit Addressing 40
6.1.1 UDF-to-X12 Translation 40
6.1.2 X12-to-UDF Translation 42
6.1.3 X12 997 Acknowledgment from X12-to-UDF Translation Audit Log 42
6.1.4 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log 42

6.2 External Addressing – SAACONS Example 43
6.2.1 UDF-to-X12 Translation 43
6.2.2 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log 44
6.2.3 X12-to-UDF Translation 44

6.3 Combined Implicit/External Addressing – IPC Example 45
6.3.1 UDF-to-X12 Translation 45

7.0 Integration Procedures 46

Appendix A EXIT Functions 49

Appendix B Message Description File 57

Appendix C TESTAPI Map Family 64

Appendix D Notes 67

List of Figures

Figure 3-1 Message Exchange 3
Figure 4-1 Delete Subtypes Dialog Box 16
Figure 4-2 Merge Type Dialog Box 17
Figure 4-3 UDF Enveloping Scheme Type Tree Window 20
Figure 4-4 Copy Type Tree Dialog Box 21
Figure 4-5 Levels of UDF Abstraction 22
Figure 4-6 Record Loops 22
ii MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
Figure 4-7 Record Loops in Type Tree 23
Figure 4-8 Loop Component List 23
Figure 4-9 Composite List Type Tree 24
Figure 4-10 Composite Component List 24
Figure 4-11 Example Audit Log 25
Figure 4-12 Audit Type Tree 26
Figure 4-13 Audit Log Component List 27
Figure 4-14 Map Instance Component List 27
Figure 4-15 Audit Type Tree Section List 28
Figure 4-16 Data Audit Component List 28
Figure 4-17 Audit Type Tree Element List 29
Figure 4-18 Audit Element Component List 29
Figure 4-19 Transaction Component List 30
Figure 4-20 Error Component List 30
Figure 4-21 Error Detail Component List 31
Figure 4-22 Error Record Component List 31
Figure 4-23 Audit Type Tree Set List 32
Figure 4-24 Composite Error Component List 33

List of Tables

Table 3-1 Transaction Sets 4
Table 3-2 Translation Map Default Directories 6
Table 3-3 X12 Envelope Information 8
Table 5-1 ISA Segment 36
Table 5-2 GS Segment 37
Table 6-1 Trading Partner Identifier Types and Properties 41
 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 iii

M APPER’ S GUIDE
This page intentionally left blank.
iv MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

pment
, and
1.0 Document Overview
This document serves two purposes: 1) To give an overview of translation processing within
the Electronic Commerce Processing Node (ECPN) and 2) To provide instructions on creating
a set of translation maps and supporting products for a new user-defined file (UDF) type. This
document assumes that you have some previous knowledge of the TSI Mercator® develo
suite. You should also be familiar with the ECPN software, the X12 messaging structure
the UDF messaging structure to be translated.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 1

M APPER’ S GUIDE

2,
2.0 Referenced Documents
The following documents are referenced in this Mapper’s Guide. In the event of a later version
of a referenced document being issued, the later version shall supersede the referenced version.

• ASC X12 Electronic Data Interchange X12 Standards, Release 4010, DISA, December
1997.

• Draft Software User’s Guide for Electronic Commerce Processing Node, Version 2.
INRI, May 1999.

• Mercator: Execution Engine Core API Reference Guide, TSI International Software, Ltd.,
1997.

• Mercator: Map Editor Reference Guide, TSI International Software, Ltd., 1997.

• Mercator: Type Editor Reference Guide, TSI International Software, Ltd., 1997.
2 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

)

g on
t as
mat

 which
 case,
 sends
AN,
nds the
at

sends it
ge to
3.0 Translation Overview
The Electronic Commerce Infrastructure (ECI) comprises government and industry systems
that conduct business using Electronic Data Interchange (EDI). ECPN facilitates EDI between
government sites (i.e., Automated Information Systems [AISs]) and industry sites (i.e., trading
partners).

ECPN processes two categories of messages — X12 format and user defined file (UDF
format. The X12 format complies with the American National Standards Institute (ANSI)
benchmark for electronic commerce. As their name implies, UDF formats vary, dependin
their origination point. When ECPN receives a UDF, it translates the UDF into X12 forma
part of processing. After translation, an X12 may be translated again to another UDF for
depending upon its destination.

Figure 3-1 depicts a typical message exchange: An AIS sends a UDF message to ECPN,
translates the message to X12. (Some AISs do not send UDFs directly to ECPN. In this
the AIS sends a UDF to a gateway [GW], which translates the message to X12 and then
it to ECPN.) ECPN forwards the X12 message to a Value Added Network (VAN). The V
in turn, translates the message to a UDF format that a trading partner can accept and se
UDF to the trading partner. If the trading partner sends back a message in response, th
message (a UDF) travels to the VAN, which translates it to X12 format and forwards it to
ECPN. When ECPN receives the message, it translates the message to UDF and then
to the AIS. (For some AISs, ECPN sends the X12 to a GW, which translates the messa
UDF and then sends it to the AIS.)

Figure 3-1 Message Exchange
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 3

M APPER’ S GUIDE
3.1 Transaction Types

Table 3-1 lists the most commonly used transaction types for EDI.

Table 3-1 Transaction Sets

Identifier Title

810 Invoice

820 Payment Order/Remittance Advice

821 Financial Information Reporting

824 Application Advice

836 Procurement Notice

838 Trading Partner Profile

840 Request for Quotation

843 Response to Request for Quotation

850 Purchase Order

855 Purchase Order Acknowledgment

860 Purchase Order Change Request – Buyer Initiated

865 Purchase Order Change Acknowledgment/
Request – Seller Initiated

997 Functional Acknowledgment
4 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

s of
ype that

tor can
, and
3.2 Maps

ECPN uses the Mercator software to perform the actual translation of messages using a series
of maps. A map is a translation specification to Mercator. A collection of maps and processing
rules on one type of UDF is called a map family. A UDF-to-X12 map handles all UDFs for all
transaction types. Similarly, an X12-to-UDF map handles all X12s for all transaction types. For
example, if an AIS sends 840, 850, and 860 transaction types, a single UDF-to-X12 map for
the map family handles the mapping for all of these transaction types.

ECPN supports two types of translation acknowledgments: 997 and 824. A 997
acknowledgment contains status information about an X12-to-UDF translation, and an 824
acknowledgment contains status information about a UDF-to-X12 translation. A map family
that includes acknowledgment maps produces an acknowledgment message for each
translation. A map family that does not include acknowledgment maps does not generate
acknowledgments. ECPN administrators may configure the interface between ECPN and the
message originator to send no acknowledgments, to send acknowledgments for translation
failures, or to send acknowledgments for all translations.

The interface between ECPN and an external source is known as a channel. For a complete
description of communications channels, see the Software User’s Guide for Electronic
Commerce Processing Node.

Map families are specified per channel; therefore, each message received on a channel is of the
specified message type, and each message sent to a channel is translated to that same message
type. Each map invoked for a given family is specified via a message description file. Through
keywords, the message description file specifies each of the maps associated with that family.
This file also contains descriptive information that is shown during channel configuration. For
an explanation of the message description file, see Appendix B. Associated with each map
family are various map documents that provide details on the Implementation Conventions (IC)
used, the UDF specifications, and so on.

A typical map family consists of one or more of the following types of maps:

• Premap 1

This map is used when a two-stage file manipulation is required prior to the regular
UDF-to-X12 translation. It typically preprocesses an incoming file to produce a serie
contiguous single-addressee messages. This processing occurs for each message t
has a sequence of addresses above a single message body. A Premap1 is used for
UDF-to-X12 translation, and it is optional.

• Premap

This map bounds, filters, and pads each message in an input file so that the transla
extract each message for mapping. A Premap is used only in UDF-to-X12 translation
it is optional. If a Premap1 is used, a Premap must also be used.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 5

M APPER’ S GUIDE

e
og is

tion,
gment.
tatus

ssage
 a

tion,
g
sage
n 824

 of
full
es, see

• UDF to X12 map

This map accepts as input either a raw UDF message or a message prepared by th
premap(s) and produces the corresponding X12 message and audit log. The audit l
used as input to the optional 824gen map to produce a translation status message.

• 824gen map

Using input from the audit log that was produced through the UDF-to-X12 map execu
this map produces an 824 X12 translation status message, known as an acknowled
Note that if this acknowledgment is sent back to the UDF originator, this translation s
message is translated to an 824 UDF.

• X12 to UDF map

This map takes an X12 message as input and produces the corresponding UDF me
and audit log. This audit log is used as input to the optional 997gen map to produce
translation status message.

• 997gen map

Using input from the audit log that was produced through the X12-to-UDF map execu
this map produces a 997 X12 that may be sent to the X12 originator. Note that durin
outgoing (X12-to-UDF) translation, a 997 acknowledgment is not generated for a mes
that was received on a UDF channel or for a system-generated message, such as a
acknowledgment message created during UDF-to-X12 translation.

Table 3-2 lists the default location of each map family component. Note that the location
individual maps (ported to HP-UX) and optional look-up tables can be overridden using
paths or expandable tokens in the message description file. For a description of map nam
Appendix B.

Table 3-2 Translation Map Default Directories

This directory Contains

/h/data/global/EC/Messages/Maps/<map_
family>

Map families (individual collections of map
files ported to HP-UX); may also contain
optional look-up tables

/h/data/global/EC/Messages/MessageDesc/
<map_family>

Message description file, which includes
descriptions of map files, transaction sets
supported, and any unique addressing
information

/h/data/local/EC/html/MapDocs/<map_
family>

(Optional) Mapping specifications and
implementation conventions, along with the
HTML files that serve as their table of contents
6 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

PN. If

fied
ed
 behalf
ery

 is
lator.
mms.

d

 on
 this

input
tion
 in this
tabase
For example, for the Standard Army Accounting and Contracting System (SAACONS), the
default location for the map files and the look-up table files is /h/data/global/EC/Messages/
Maps/SAACONS; the location for the message description file is /h/data/global/EC/Messages/
MessageDesc/SAACONS; and the location for the HTML file and all of the documents that it
references is /h/data/local/EC/html/MapDocs/SAACONS.

3.3 ECPN Translation Programs

The following ECPN programs are essential to translation:

• comms, emaild, email_send, ftpd

These programs are responsible for receiving and sending messages to and from EC
a program is receiving messages, it is called InComms, and if a program is sending
messages, it is called OutComms.

• InXlator

The InXlator program is responsible for interacting with Mercator using all of the speci
premaps and maps to perform UDF-to-X12 translation and to generate the associat
acknowledgment. The InXlator also queries the system setup database and TPDB on
of the maps and provides other reference services. (For more information on this qu
process, see Appendix A.)

• Router

The Router program determines target channels based on how the routing database
configured. If the target channel is a UDF channel, the message is queued to the OutX
If the target channel is not a UDF channel, the message is queued directly to OutCo

• OutXlator

The OutXlator program is responsible for interacting with Mercator using the specifie
maps to perform X12-to-UDF translation and to generated the associated
acknowledgment. The OutXlator also queries the system setup database and TPDB
behalf of the maps and provides other reference services. (For more information on
query process, see Appendix A.)

3.4 UDF-to-X12 Translation Basics

Each UDF message translates into a single X12 transaction. So, for example, if a UDF
file contains five UDFs, five separate X12 transactions result from the UDF-to-X12 transla
process. For each X12 transaction produced, the X12 envelope information (as described
section) is generated by the map. During each map invocation, the map may request da
data or specify other values within the translator, as described in Appendix A.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 7

M APPER’ S GUIDE
3.4.1 X12 Envelope Information

An interchange is the information in a message within one ISA and the corresponding IEA
segment, and a functional group is the information within one GS and the corresponding GE
segment. These components define the standard enveloping of an X12 transaction, and this
envelope contains addressing information. Each of the elements listed in Table 3-3 is created
by the map to produce an X12 envelope. (For a description of the X12 interchange [ISA/IEA]
and functional group [GS/GE] envelopes, see the ASC X12 Electronic Data Interchange X12
Standards, Release 4010.)

Table 3-3 X12 Envelope Information

Field number Field name Value/Rule

ISA01 Authorization Information Qualifier “00”

ISA02 Authorization Information None

ISA03 Security Information Qualifier “00”

ISA04 Security Information None

ISA05 Interchange Sender ID Qualifier See Section 3.4.2

ISA06 Interchange Sender ID See Section 3.4.2

ISA07 Interchange Receiver ID Qualifier See Section 3.4.2

ISA08 Interchange Receiver ID See Section 3.4.2

ISA09 Interchange Date Map rule:
CURRENTDATE ()

ISA10 Interchange Time Map rule:
CURRENTTIME ()

ISA11 Interchange Control Standards ID “U”

ISA12 Interchange Control Version Number Map family dependent
(e.g., “00305”)

ISA13 Interchange Control Number See Section 3.4.2.2

ISA14 Acknowledgment Requested “0”

ISA15 Test Indicator “P”

IEA01 Number of Included Functional Groups Map rule: COUNT
(FuncGroups)

IEA02 Interchange Control Number Identical to ISA13

GS01 Functional ID Code 2-letter code, dependent
on transaction set

GS02 Application Sender’s Code UDF Sender Code

GS03 Application Receiver's Code UDF Receiver Code
8 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

stics

 it is a
3.4.2 Envelope Value Generation

The envelope values (listed in Table 3-3) are filled during X12 message creation using the
techniques described in Section 3.4.2.1 to 3.4.2.3.

Each AIS identifies itself and addresses UDF messages to recipients in its own unique way.
Sometimes this identification information is contained within the UDF; at other times, it is
external information, such as the file name extension. An AIS primarily uses the following
codes for addressing:

• CAGE – Commercial and Government Entity

• DODAAC – Department of Defense Activity Address Code

• DUNS – Data Universal Numbering System

• DUNS+4 – DUNS number with a 4-character suffix

3.4.2.1 Values from Message Content

Most of the time, an addressing code in message content is an unqualified value. Heuri
must be applied to deduce whether the value is a CAGE code, a DODAAC, and so on.

Typically, the following rules are used for distinguishing codes:

• If a code is 9 numeric characters, it is a DUNS.

• If a code is 13 numeric characters, it is a DUNS+4.

• If a code is 5 characters (1st and 5th numeric; others alphanumeric, except I and O),
CAGE.

• Any other code is a DODAAC.

GS04 Date Map rule:
CURRENTDATE ()

GS05 Time Map rule:
CURRENTTIME ()

GS06 Group Control Number See Section 3.4.2.2

GS07 Responsible Agency Code “X”

GS08 Version Release Industry Code Map family dependent
(e.g., “003050”)

GE01 Number of Transaction Sets Included Map rule: COUNT
(Transactions)

GE02 Group Control Number Identical to GS06

Table 3-3 X12 Envelope Information (Continued)

Field number Field name Value/Rule
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 9

M APPER’ S GUIDE

06s).
d, that

velope

8
tion,
ading
ing
e

erate

data
 derive
d
3.4.2.2 Values from Databases that Support Translation

The following two ECPN databases assist in the translation process:

• System setup database

This database specifies a range for ICNs (ISA13s) and another range for GCNs (GS
ICNs and GCNs are incremented by ECPN each time an X12 envelope is generate
is, whenever any of the following events occur:

– A UDF message is translated to an X12 interchange.

– An 824 X12 translation status message is generated.

– A 997 X12 translation status message is generated.

ICNs and GCNs wrap at the end of the range specified in this database.

The system setup database also specifies the ISA05/ISA06 that is used in the X12 en
for the translated message.

• Trading partner database

Each trading partner registers with the Central Contractor Registry (CCR) via an 83
message that contains information on the trading partner. After verifying this informa
CCR forwards the 838 to ECPN. In turn, ECPN parses the 838 and populates the tr
partner database (TPDB) with information such as the name and address of the trad
partner, remittance information, points of contact, and CAGE/DODAAC/DUNS for th
trading partner. The key field is DUNS.

When an envelope is generated for some UDF families, the TPDB is queried to gen
addressing information. (For more information on this query process, see Appendix A.)

3.4.2.3 Values from Look-up Tables

When defined in the message description file, an additional input file called a look-up table is
passed to the UDF-to-X12 map. Look-up tables provide map family or channel-specific
so that message content or attributes (e.g., received file name extension) may be used to
an envelope address (i.e., ISA06, ISA08, GS02, or GS03). A look-up table may be edite
through the ECPN edit channel window, as described in the Software User’s Guide for
Electronic Commerce Processing Node. For a complete description on path/file name
resolution for look-up tables, see Appendix B.
10 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

s UDF
el,
, and
f a
ata or

rates
rts on
 the
that
n be
iption

 listed
t file
ied in
:

g,

 the
 of

d. The
 to do
f the

ex file
map
cified
12
3.5 X12-to-UDF Translation Basics

Each message that is routed to a UDF channel type must be translated to that channel’
format prior to transmittal. This principle applies to messages received on an X12 chann
messages received on a UDF channel and translated into the intermediate format (X12)
ECPN-generated X12 824 application advice messages defining the translation status o
received UDF message. During each map invocation, the map may request database d
specify other values within the translator, as described in Appendix A.

By default, if a 997 acknowledgment map is provided, each X12-to-UDF translation gene
an X12 997 Functional Acknowledgment message. This acknowledgment message repo
the translation success or failure of an X12 functional group and is generated by parsing
audit log, which is an artifact of the X12-to-UDF translation. The default amount of data
is passed to the X12-to-UDF map is a single functional group (at a time). This default ca
overridden by setting the translation level (values ISA, GS, or ST) in the message descr
file. For a complete description of the message description file, see Appendix B.

3.6 Processing Flow

The following subsections describe the processing flow for UDF-to-X12 translation
(Section 3.6.1) and X12-to-UDF translation (Section 3.6.2).

3.6.1 UDF to X12

A channel is configured for the UDF type for which it receives messages. The InComms
process for that channel places a received file on a queue for the InXlator. If a Premap1 is
in the message description file, the InXlator invokes the Premap1 to reorganize the inpu
into contiguous single-addressee messages. InXlator then invokes the premap (if specif
the message description file). The execution of this premap produces the following files

• A modified input file that may include filtered values, replaced values, record paddin
and/or record initiation tokens.

• An index file specifying the bounds for individual messages in the input UDF file and
modified input file. Note that if a Premap1 is invoked prior to the premap, the output
Premap1 is the input UDF file for premap.

If premap(s) are specified and a premap fails, a default 824 acknowledgment is generate
824 acknowledgment may be sent back to the UDF originator if the channel is configured
so. This default message provides very little detail and notifies the message originator o
translation failure.

If premap(s) are specified and the premap stage is successful, the InXlator uses the ind
to divide the input and output files of the premap into single transaction pieces. The pre
output pieces are passed individually through the UDF-to-X12 map. If no premap was spe
in the message description file, the original received UDF file is passed to the UDF-to-X
map.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 11

M APPER’ S GUIDE

or

annel,
tes the

p for
mily,
. This

 X12
ation.

 the 997
ured

ge

ssfully

nel. (For
ack via
e email
 all
If an 824gen map is provided for the map family, the InXlator executes it after each execution
of the UDF-to-X12 map to generate 824 X12 translation status messages.

The InXlator then collects all of the output X12s, collects the individual UDF messages from
the input file, extracts the 824 X12s, and queues them to the Router process.

The Router process, using information passed by the InXlator, creates message objects for the
X12s and the 824 X12s, linking them appropriately. The Router then routes the X12s to the
destination — the X12 to UDF translator (OutXlator) if the destination is a UDF channel
OutComms if the destination is an X12 channel.

If the ECPN administrator has elected to send acknowledgments back to the original ch
and if the acknowledgment messages are generated for the map family, the Router rou
824 X12s to the OutXlator, which translates them to UDF before sending them to the
originator.

3.6.2 X12 to UDF

Using the information passed from the Router, the OutXlator invokes the X12-to-UDF ma
translating the X12 to a UDF. Next, if a 997gen translation map is provided for the map fa
the OutXlator invokes the 997gen map to produce 997 X12 translation status messages
invocation of the 997gen map is skipped if the X12 message being translated is an 824
translation status message or if it is just an intermediary message in UDF-to-UDF transl

The OutXlator then queues the translated message (the UDF) to OutComms and queues
X12s to the Router (to be sent back to the X12 originator if the source channel is config
this way).

If the destination channel for the UDF is of the same type as that of the UDF sender, no
invocations of the X12-to-UDF map are made, and the UDF is extracted from the messa
source and sent to the destination. For example, this capability is used to forward (succe
translated) SAACONS UDFs to the Defense Accounting and Printing System (DAPS).

3.7 Admin Message Processing

ECPN provides an ADMIN tab in the edit channel window through which the user can
configure how and where to send the 824 and 997 translation status messages (admin
messages) on each channel. These messages may be sent back on the incoming chan
example, if UDF messages are received via FTP, these admin messages may be sent b
FTP.) Alternately, the translation status messages may be sent as email messages to th
address(es) specified. In addition, the ECPN administrator may specify whether to send
acknowledgments, send only the negative acknowledgments, or not send any
acknowledgments.
12 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

de
3.8 Translation Toolbox

The translation process is transparent to ECPN administrators. However, the ECPN
administrators may use the translation toolbox interface as a window into the various map
invocations that the InXlator and OutXlator perform. The translation toolbox is available from
the message log and error queue and allows administrators to view all of the intermediate data
such as the premap.out file, the modified input file, and so on. For information on the
translation toolbox, see the Software User’s Guide for Electronic Commerce Processing No.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 13

M APPER’ S GUIDE

 IC.

.

ata
4.0 Type Tree Construction
In order to begin the mapping process, you must either create or use existing type trees to
represent the input and output data involved in the translation process for your specific system.
Because these type trees will be used in mapping either UDF transactions to X12 transactions
or X12 transactions to UDF transactions you must create both UDF and X12 type trees.

4.1 Document Overview

Various types of documents are available to assist you in the map development process. This
section provides an overview of these documents.

4.1.1 ANSI ASC X12 Document

The ASC X12 Electronic Data Interchange X12 Standards is the standard document for the
entire X12 format of messages and is published (in print only) for each version of the X12. For
example, version 3010, version 3040, version 3050, and version 4010 each has its own X12
specification.

Each transaction type that can be used in an X12 EDI exchange is described in this document.
This document also describes each segment that is part of a transaction and lists the data
dictionary for each element of each segment.

4.1.2 Implementation Conventions (IC)

Implementation Conventions are also sometimes called Implementation Guidelines (IG). The
X12 standard is an all-encompassing document that serves everyone who exchanges messages
via EDI. However, each industry pares down the standard to suit its particular needs and creates
an industry-specific IC.

The Government issues this pared down standard that suits its requirements. Some of the
specifics of this paring down are as follows:

• Some optional segments in the X12 standard might be marked as mandatory in the

• Other optional segments in the X12 standard might be marked as not used in the IC

• Each element might be restricted to having only a few values taken from the entire d
dictionary.

For each version of X12 that ANSI specifies, there is a corresponding set of ICs.
14 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
4.1.3 Part 10

Part 10 deals primarily with X12 enveloping and the acknowledgment model that is to be used
for EDI in the Government. This document does not specify an acknowledgment model for
UDF-to-X12 translations. It does, however, specify Point-of-translation (POT) to
Point-of-translation acknowledgments for X12s.

4.1.4 UDF Specifications

Each agency that sends UDFs to ECPN, documents the format of UDF data that it sends.

4.2 Creating X12 Type Trees

You may create a type tree by paring down an existing ANSI X12 type tree. You should do this
only when the X12 specification is taken directly from the ANSI X12 standards.

To make a copy of the standard EDI type tree

The first step in creating an X12 type tree is to make a copy of the standard EDI type tree,
containing only the transactions you specify (also known as paring down a standard type tree).

1. Open the EDI type tree (e.g., ANSI3070.MTT, which contains the full ANSI 3070 version
release). When creating a multi-version tree, start with the latest version release that you
will be using.

2. To save the type tree as your new IC type tree file and rename the file, select File > Save
As.

3. Under Inbound Partner Funct’lGroup ANSI EDI, select F3070 (or Fnnnn, where nnnn
is the 4-digit version release indicator code).
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 15

M APPER’ S GUIDE

pe

action
4. Select Type > Delete Subtypes. The Delete Subtypes dialog box (Figure 4-1) appears,
listing all of the F3070 Inbound Partner Funct’lGroup objects contained within the ty
tree.

Figure 4-1 Delete Subtypes Dialog Box

5. In the Delete Subtypes dialog box, click Select All. All of the subtypes in the list are
highlighted.

6. Deselect each group to keep by clicking it, which removes the highlighting. Some
transactions are included as part of a group of related elements. For example, trans
821 is included with the 827 transaction as part of the FR group.

7. To remove the groups, click Delete.

8. Repeat Steps 3 to 7 for F3070 under Outbound Partner Funct’lGroup ANSI EDI to
remove the Outbound Partner Groups that are not needed.

9. Save the IC file.

At this point, many unwanted subtypes remain in the type tree. You may remedy this
situation by exercising one or both of the following two options. One option is to remove
an unnecessary directional transaction set. Another option is to remove unnecessary
transactions within a group containing desired transactions. To prune the type tree to the
desired scope, perform the steps in this section again.
16 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
To merge an IC type tree into a new tree

This process removes all unnecessary data elements that are not referenced in a pared-down
type tree.

1. Create a new type tree, using EDI as the root name. Save the new tree to a different name
than that used in Step 2 of To make a copy of the standard EDI type tree.

2. From your saved IC file (created in Step 2 of To make a copy of the standard EDI type tree),
select the type Transmission EDI.

3. Select Type > Merge. The Merge Type dialog box (Figure 4-2) appears.

4. Select the type tree created in Step 1, and then select the Merge Sub-Tree check box.

Figure 4-2 Merge Type Dialog Box

5. Click OK.

6. After the merge finishes, save the new type tree.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 17

M APPER’ S GUIDE

ments

UCS
ns:

bound
DI)
 to
To clean up unused elements

Although you may have removed some elements in the merging process, other unnecessary
elements remain. For example, in the case of removing a directional set of transactions (e.g.,
Outbound) presented in To make a copy of the standard EDI type tree, the Funct’lGroup
Partner is removed, but the Transmission and Interchange remain. These directional ele
can be removed by selecting Transmission or Interchange and selecting Type > Delete
Subtypes (For this example, selecting Outbound and then clicking Delete.)

The same process may also be performed by selecting the part to be removed (Outbound
Transmission or Outbound Interchange) and pressing the [Delete] key on the keyboard. A
dialog box appears confirming that you wish to delete that type.

Another commonly unused set of elements which remain are those elements related to
transactions, as opposed to X12 transactions. UCS types appear in the following locatio

• Inbound/Outbound Transmission EDI

• Inbound/Outbound Interchange EDI

• Variant Control ANSI EDI

The first two types can be removed using the Delete Subtypes method (described in To make a
copy of the standard EDI type tree), by selecting Inbound or Outbound within the
Interchange EDI or Transmission EDI levels. For the Variant Control type, use the same
method, selecting Control ANSI EDI.

Another way to delete the types is to select the location to be removed (UCS Inbound/Out
Transmission EDI, UCS Inbound/Outbound Interchange EDI, and Variant Control ANSI E
and press the [Delete] key on the keyboard. A dialog box appears confirming that you wish
delete that type.

NOTE: If you wish to later add a different version transaction in a certain direction, do not
remove the directional transaction set. Perform the process detailed in To make a copy of the
standard EDI type tree, but delete all transaction sets for that direction.
18 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

l
ted,
To analyze a new type tree

This procedure ensures your new tree is valid.

1. Select Tree > Analyze, or select the analyze tool from the toolbar (a check mark).

2. Select either Logic or Both, and then click OK.

3. Correct any errors that result.

4. Save the type tree.

To add additional functional groups to a new IC type tree

Note that this process may not be necessary.

1. Open the new IC type tree.

2. Open the standard EDI type tree.

3. Under Inbound/Outbound Partner Funct’lGroup ANSI EDI, select the functional group
that contains the transaction set to be added.

4. Select Type > Merge. The Merge Type dialog box (Figure 4-2) appears.

5. Select the IC type tree, and then select the Merge Sub-Tree check box.

6. Click OK.

7. After the Merge finishes, save the industry subset file.

To analyze a new type tree

This procedure ensures your new tree is valid.

1. Select Tree > Analyze, or select the analyze tool from the toolbar (a check mark).

2. Select either Logic or Both and then click OK.

3. Correct any errors that result.

4. Save the type tree.

NOTE: If you wish to later add a different version transaction and have deleted an
Inbound or Outbound Funct’lGroup, you will not be able to correct the error that wil
result. Once the different version transaction is added in the direction that was dele
and the tree is analyzed, the errors should be resolved.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 19

M APPER’ S GUIDE
4.3 Creating UDF Type Trees

If the data within a UDF is similar in representation to that of an ANSI X12 structure, you may
use a type tree of the corresponding X12 transaction set, and derive the UDF data structure from
a subset of this tree. The record format and UDF enveloping may be changed as necessary to
match the UDF specification.

It may be necessary to create the type tree from scratch. If this is the case, you may find it
helpful to look at an existing type tree to learn what your type tree should look like.

Each UDF varies depending upon the logical map requirements; however, a consistent
enveloping scheme should be used throughout all UDF type trees. Consistency makes it easier
to understand a type tree, and makes the process of merging type trees easier.

For consistency, the root node of the UDF type tree should be named UDF. This node denotes
the type of message that is contained in the type tree. The following categories should be under
the UDF root node: Control, Transmission, and any version or system-specific transaction
identifiers (e.g. V3050, V3070). The Control category should contain all delimiter information
and any structure used to contain only X12 enveloping information (ISA and GS information).
In the example displayed in Figure 4-3, only version-specific identifiers are used. While a UDF
does not necessarily have version identifiers, it is sometimes useful to describe differing UDF
transactions by the version and transaction type of the corresponding X12 to which it will be
translated.

Figure 4-3 UDF Enveloping Scheme Type Tree Window

Because the data represented in the UDF appears in the form of a continuous stream of bytes,
a method must be used to determine the separation between individual Elements, and, at a
higher level of abstraction, Records, Loops, and Transactions. To help in this separation
process, you may use Items known as Control Delimiters. In many cases, the following three
delimiters are used: the Composite, Element, and Terminator delimiters. The most commonly
used delimiter, the Terminator delimiter signifies the end of a record, usually in the form of a
carriage return/line feed sequence or some other end-of-line signal. The Composite delimiter
20 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
marks the boundaries between Elements contained within a Composite. The Element delimiter
marks the boundaries between Elements and Composites used within a record. The Composite
and Element Delimiters are mainly used with data, which contains delimited records, as
opposed to fixed-length records.

The Control category may be created using the new element tool (leaf tool), or it may be copied
from an existing type tree. To copy the category, select Control on the original type tree and
then select Type > Copy. The Copy Type dialog box (Figure 4-4) appears. To copy the
Control category, click on the destination type tree, select the Copy Sub-Tree check box, and
then click OK.

Figure 4-4 Copy Type Tree Dialog Box

When using the copy method, you may find that some of the delimiters are unnecessary. These
delimiters or elements may be removed by selecting each one and then pressing the [Delete]
key on the keyboard. A dialog box appears asking you to confirm the deletion. You may also
wish to limit the possible values that a specific delimiter can contain. You may view all of the
possible values that a delimiter contains by double-clicking on the specific delimiter (e.g., the
Terminator delimiter under Delimiter Control UDF). Once you are viewing the list of values,
values may be added by clicking on the bottom-most empty square in the Restriction column
and entering the new value. Make sure that the correct method of representation is chosen, Hex
or Symbol, before entering the value. You may also wish to enter a description of the entered
value. If you wish to remove one or more values from the list, you may do this by selecting the
value to remove, and then selecting Restriction > Delete. Once all changes have been made,
close the restriction window. If changes were made, you are prompted to save the changes.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 21

M APPER’ S GUIDE
The basic concept of a file is abstracted as the Transmission level of a type tree (Partner group
in Transmission category). A file containing one or more UDFs is, in turn, thought of as a
Transmission consisting of one or more Transactions, where a UDF is abstracted as the
Transaction level of a type tree (Transaction Partition Group in SysName or V3070, V3050
Category). The Transaction Group is a Partition Group that allows this type tree to be used with
varying types of transactions. For an example of the levels of UDF abstraction, see Figure 4-5.

Figure 4-5 Levels of UDF Abstraction

Again, any category, group, or item may be added by copying from an existing type tree or by
using the new element tool (leaf tool).

A Transaction is the series of elements that compose the UDF, usually in the form of a series
of Records and/or Loops, as shown in Figure 4-6 (Rec1 and Rec2 Groups in Record Category).
Loops are a series of Records that occur together and are repeated within the scope of the
Transaction. Figure 4-6 illustrates the use of Records and Loops.

Figure 4-6 Record Loops

Components may be added to groups by double-clicking the target group and then dragging the
elements to include as components into the desired position on the component list.
22 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
Figure 4-7 is a sample type tree in which the Loops partition groups have been expanded to
reveal the type tree representations of the Loops used in this sample UDF. The Loops that
comprise the #820Travel Transaction may be seen in their type tree representation in
Figure 4-7.

Figure 4-7 Record Loops in Type Tree

Figure 4-8, a Loop Component List, details a Loop used in this sample UDF demonstrating the
concept of grouping multiple records and possibly multiple instantiations of records within a
loop. Using Loops is optional, but Loops may be necessary to prevent long series of repeating
records that appear in certain UDFs.

Figure 4-8 Loop Component List
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 23

M APPER’ S GUIDE
The components of the Records are defined in the UDF logical map specifications and appear
as Elements or Composites of Elements in the type tree. Sometimes it is necessary to include
more than one Element in a Composite. The Composite category is expanded in Figure 4-9, but
the Element category is not, due to the length involved in so doing. Each Element would be
abstracted as an Item whose attributes are defined by the UDF logical map specifications.

Figure 4-9 Composite List Type Tree

The abstraction, Composite, describes the basic grouping together of a series of related
elements. The use of Composites is optional, but Composites may be used to denote a group of
related elements, or of repeating groups of Elements whose existence is associated to other
Elements within the group. In the example UDF, the Composite #820DTS_Voucher, shown in
Figure 4-9, is used to group a series of elements related to each other and the specific Voucher,
which the data describes. Figure 4-10 is the Component List of the #820DTS_Voucher
Composite showing the Elements used to comprise the Composite.

Figure 4-10 Composite Component List
24 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
4.4 Creating Other Type Trees

At times, it is necessary to create type trees that are specific to data structures other than UDF
or X12 specifications. Other type trees that you may need to create are as follows: the premap
type trees, the input type tree for the x824gen map, the input type tree for the x997gen map,
and the type trees used to represent the data in an external lookup table. The need for these type
trees depends upon your specific system requirements.

4.4.1 Acknowledgments

When creating x824gen and x997gen maps, you must have type trees that represent the data
provided in the Mercator audit log. You should use an existing audit log type tree and modify
it to fit the specific format of the data contained within the audit log. This audit log data is
generated from the UDF-to-X12 map for x824gen or the X12-to-UDF map for x997gen.
Figure 4-11 shows an example audit log.

When creating, changing, and using the type trees for translation error detection and reporting,
you must have a basic understanding of the layout of the Mercator-generated audit logs. When
referencing the audit log for the purpose of error reporting and translation acknowledgment,
much of the data included in the audit log is irrelevant to the process and may be referred to as
either placeholders or data used for distinguishability purposes.

Figure 4-11 Example Audit Log
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 25

M APPER’ S GUIDE
At this time, the only data that is pertinent to the error reporting and translation
acknowledgment process is the data contained within the data audit section, delineated by the
BEGIN DATA AUDIT and END DATA AUDIT data markers (Figure 4-11). Because of the
complexity of the type tree needed, you should use a pre-existing audit log type tree and edit
that tree to meet your needs. The type tree displayed in Figure 4-12 shows the basic categories
used, along with a breakdown of all of the data lines (Line category) necessary for containing
the placeholders and data used for distinguishability purposes.

Figure 4-12 Audit Type Tree
26 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
The Audit Log group is used as the top level of the data abstraction of the Mercator audit log.
Figure 4-13 shows the components of the audit log. The audit log is abstracted as a series of
0-to-many instances of MapInstance Section.

Figure 4-13 Audit Log Component List

Figure 4-14 shows the items that compose the MapInstance Section container. The
MapInstance Section container is indicative of the representation of the Mercator audit log
layout. As previously mentioned, the majority of the components listed in Figure 4-14 are used
to contain information pertinent to the execution of the original UDF-to-X12 mapping process.

Figure 4-14 Map Instance Component List
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 27

M APPER’ S GUIDE

ne.

ction
Figure 4-15 shows the groups contained within the Section category. The important groups are
the MapInstance container (previously discussed in this section) and the DataAudit container.
In order to view the contents of these or any groups in Mercator, double-click the group to view,
and the Component lists are displayed.

Figure 4-15 Audit Type Tree Section List

Double-clicking the DataAudit Section group displays the component list, as shown in
Figure 4-16. This list shows the basic makeup of the Data Audit portion of the Mercator audit
log. Referring to the audit log displayed in Figure 4-11, note that the BEGIN_DATA_AUDIT
Line component of this list refers to the line in the audit log that states BEGIN DATA AUDIT.
The next line of the audit log beginning with “Lvl Index/Count” comprises the TitleBar Li
The line that follows “Auditing Input Card 1:” is the first element for the Input DataAudit
Status portion of the DataAudit Section. The second element of that group is the Transa
Set.

Figure 4-16 Data Audit Component List
28 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

. The
 the
n
To this point, no major, if any, changes have been necessary to make this audit log type tree
match the requirements that you have for a specific data audit. Figure 4-17 and Figure 4-18
display a list of elements that you need to change according to your data auditing requirements.
The type tree shown in Figure 4-17 has the Element group expanded to show the list of
elements that occur within the data audit section, in alphabetical order not order of occurrence.

Figure 4-17 Audit Type Tree Element List

Each Element is composed of the components displayed in Figure 4-18. You need to change
the component rule for the Occurrence Detail DataAudit Line to reflect the data as it appears
in the audit log.

Figure 4-18 Audit Element Component List

To reflect the makeup of your audit log Data Audit Section, the Transaction Set components
must be modified. Figure 4-19 shows the sample breakdown of the Transaction Set portion of
this type tree. In your type tree, you should make changes to assure that you are properly
identifying the Transaction level of the data audit, in this case titled “Partner Transaction”
Error component remains for your type tree. This section is actually used to report all of
errors that occur during the translation process. The Elements following the Error portio
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 29

M APPER’ S GUIDE
contain all of the data that is passed through the audit log from the original UDF. That data may
or may not be recorded, as is evident by the (0:1) qualifier at the end of each Element, stating
that there is at most one occurrence, but that the data may not exist. As discussed previously,
these elements are added as you have data recorded in the audit log, and the component rules
for each element are indicative of the data identified by each element.

Figure 4-19 Transaction Component List

An Error Detail Line followed by a line that identifies the error and any possible erroneous data
represents each error. The components of each Error Set are displayed below. The component
rule for the Error Detail DataAudit Line states that there should be no occurrence of the word
Record in the audit line, because Mercator should always report that an error has occurred
within the Transaction level. The Error Record component states that there may be
zero-to-many errors occurring at the Record level or below. The component rule states that the
Record must appear at the next level for further error mapping to occur. Mercator will report
that there was an error at the Record level before proceeding to report Element-level errors.

Figure 4-20 Error Component List
30 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

bject’s
cord
tains
 and

 or
udit

ement
e a
vels
As shown in Figure 4-21, each Error Detail DataAudit Line comprises different identification
components. The Level Component is used to determine which level of processing an item
(e.g., transaction, record, element) received, or if an error has occurred. The level is determined
with respect to the input/output card. The card object is defined as Level 0. The Index
Component is used to record either the index number of the object in a series of objects or a
count of an object that can occur multiple times. The Size Component is used to determine the
size in bytes of the object. The Status Component is used to determine the status of the o
data with values (V - Valid, E - Error, W - Warning), and the Code Component is used to re
a two-digit numeric code to further identify the status. The Object Name Component con
the name of the specific object. This component identifies each data line in the audit log
can be seen throughout the component rules above listed as Object Name Field.

Figure 4-21 Error Detail Component List

The Record level error reporting capabilities are broken down into the abstraction of
ErrorRecord Set. Figure 4-22 displays a component list of the contents of the Error Record
Record level error reporting. Again, the data audit line begins with the Error Detail DataA
Line, specifying the basic error information. The Error Record may or may not then be
identified in the Record Component or RecComponent. This denotes any errors in the el
or composite level of input/output data. The errors at the element or composite level hav
higher Level number than those in the record, thus providing distinguishability between le
of error reporting.

Figure 4-22 Error Record Component List
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 31

M APPER’ S GUIDE
Figure 4-23 demonstrates the composition of the RecComponent as it relates to the Composite
level and Element level errors.

Figure 4-23 Audit Type Tree Set List

The components of the CompositeError group are shown in Figure 4-24 to emphasize the
changes necessary for identification of composite and element levels. The Object Name Field
contains the word Composite or the equivalent word used in your file to identify a grouping of
similar elements. In the case of Element level error reporting, the same line would contain the
word Element or the equivalent word used in your file to identify your individual items or
elements. Following the component identifying the error level, a data audit line appears
specifying the data that is in error (if available) denoted by the ElementError component.
32 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

 The
ine

atting,

t card
 needs
input
 since

ecause
r each
re

 blank

fied
Figure 4-24 Composite Error Component List

4.4.2 Premap Type Trees

The premap type tree(s) are used in the premap mapping process to break down a series of
incoming transactions contained within one transmission into individual transactions per
transmission. These type trees should be as simple as possible and still be able to adequately
determine the beginning and end of each transaction within the transmission. At times it is
necessary, depending upon the mapping and data validation requirements, to use a more
detailed type tree. This detailed type tree is particularly necessary for those premap mapping
processes that require padding or labeling of the UDF data.

The premap stage breaks the incoming UDF into individual transaction sets so that they can be
passed into the UDF-to-X12 map one at a time. Some map families also require that the premap
format the data. IPC uses the premap to make sure that the transaction sets that depend on each
other are all present. SPS/ITIMP/APADE use the premap to pad records that are variable
length. The premap should do very little, if any, data validation. Because the detailed 824
reports are generated from the UDF-to-X12 map’s audit log, the premap should not fail.
type tree for the input card of the premap should have just enough information to determ
where each transaction starts and ends.

The premap needs one or two output cards. If the data does not need any additional form
the premap only needs one output card to output the sizes for parsing the original UDF
message. If additional formatting is needed, then the premap must have a second outpu
to output the modified data. If two output cards are needed, then the message description
too include the premap_udf:yes token. The mapper should create the type trees for the
card and the modified data card. These type trees may be kept in the same type tree file
they use similar data elements.

The type tree that outputs the sizes may be reused from any of the other map families b
it is a standard format across the map families. This sizes type tree contains a record fo
transaction. The records are separated by linefeeds. Each record has three fields that a
delimited by commas. The first field is required: It contains the size of the original UDF
transaction. The second field may be used to indicate the type of transaction. This field is
if the type of transaction does not affect the translation process. (IPC uses this field but
SPS/ITIMP/APADE and SAACONS do not.) The third field indicates the size of the modi
UDF. This field is blank if the data is not modified.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 33

M APPER’ S GUIDE
4.4.3 Additional Input Look-up Table Type Trees

Sometimes it is necessary to create a type tree that represents data contained within external
look-up table files that are used during the mapping process. These type trees should be made
from scratch, and care should be taken to assure that the type trees accurately reflect the data
to be contained within this structure. The type tree should allow comment lines within the file,
because the file is presented to an ECPN administrator for editing through the communications
manager interface, and the rules for data entry should be specified in the top of the file as
comments.
34 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

table
 The
ping

mber
ts”.

e
n

ome
r
ping to
op.

uld be
me.
TP”.

 loop.
ID”.
at to

ily’s
e
5.0 Map Construction

5.1 Translating UDF to X12

A logical map document specifies how elements from a UDF are mapped to an X12 and vice
versa. This document is developed in coordination with the UDF system proponents. For some
systems, this document is part of the UDF specification for that system. For other systems, such
as in the DTS to DFAS scenario (since they neither receive nor send X12s) it is separately
developed. The following sections detail the construction of a UDF-to-X12 map.

5.1.1 Map Naming Conventions

The convention for naming maps in the UDF-to-X12 map is to name all of the maps according
to the X12 type tree. The executable map has a prefix of “E” to indicate that it is the execu
map. The functional maps have a prefix of “f_” to indicate that they are functional maps.
names of the maps higher in the Navigator map tree view should reflect the X12 envelo
structure. Appropriate names for the ISA/IEA and GS/GE wrappers are “f_MapIC” and
“f_MapFG”. The functional maps for the transaction sets should have the transaction nu
in them. For example, the functional map for the 865-transaction set should be “f_865Se
The functional maps for the segments should contain the transaction set number and th
segment initiator. If the transaction uses a segment initiator more than once, the positio
number of the segment can be included. The position number can be found in the IC. S
examples are f_865_PKG and f_865_PWK210. The first example is a functional map fo
mapping to the Package segment, and the second example is a functional map for map
the paperwork segment with the position of 210. An “L” in the map name designates a lo
The 865-transaction set has a POC loop for its detail loop. The functional map name sho
“f_LPOC”. All segments in the loop should have the loop name included in their map na
The POC loop has a CTP segment. The functional map name would be “f_865_LPOC_C
Any segments that loop within the POC loop would also have another “L” to designate the
The 865 POC has a PID loop in it, the functional map name would be “f_865_LPOC_LP
If the mapper needs to create a functional map to help convert values from the UDF form
the X12 the functional map name should be descriptive. For example the SPS map fam
UDF-to-X12 map uses the “f_DecIt” and “F_NmbIt” functions to convert numbers that ar
being represented as text from the UDF representation to the X12 representation.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 35

M APPER’ S GUIDE
5.1.2 ISA Segment

The ISA Segment should be filled out as follows:

The values mapped to the InterchangeRcv’rIDQual’r and the InterchangeRcv’rID are
determined by the UDF.

Table 5-1 ISA Segment

Element Delimiter =SYMBOL(29)

Auth’nInfoQual’r Element = “00”

Auth’nInfo Element = NONE

SecurityInfoQual’r Element = “00”

SecurityInfo Element = NONE

Sender InterchangeIDQual’r
Element

Use ISASNDRQUAL exitproc, e.g.,
=LEFT(EXIT(“ISASNDRQUAL”,
“NULL”,”NULL”), 2)

InterchangeSenderID Element Use ISASNDR exitproc, e.g.,
=LEFT(EXIT(“ISASNDR”, “NULL”, “NULL”), 15)

Receiver InterchangeIDQual’r
Element

Use ISARECVQUAL exitproc.

InterchangeRcv’rID Element Use ISARECV exitproc.

InterchangeDate Element =CURRENTDATE()

InterchangeTime Element =CURRENTTIME()

InterchangeCtrlStandardsID Element =“U”

InterchangeCtrlVersion# Element Fill in Control Version Number

InterchangeCtrl# Use ICN exitproc and convert it to a number, e.g.,
=TEXTTONUMBER(TRIMRIGHT(LEFT(EXIT(“I
CN”, “NULL”, “NULL”),9)))

Ack’tRequested Element =“0” (Unless otherwise specified by UDF)

TestIndicator Element =“P” (Unless otherwise specified by UDF)

Composite Delimiter =SYMBOL(31)

Terminator Delimiter =SYMBOL(28)
36 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

il”
tings
F has
r than

d.
5.1.3 GS Segment

The GS Segment should be filled out as follows:

For more information on how to map the App’nSenderCd and App’nRcv’rCd Elements, refer to
Section 3.4.2.

5.1.4 Audit Settings

The audit log should be as small as possible. There is no need to audit on valid segments
because the 824 does not need to refer to segment indexes. The only information needed by the
824 map is any errors that were in the UDF. So the UDF-to-X12 maps need to report on the
occurrence of any transactions and provide detailed information on errors in any transaction,
and the item data in error. Assuming the UDF is mapping to the X12 3050 standard and that
the UDF type tree follows the conventions laid out in Section 4.3, the audit settings should be
set to audit “ANY Transaction V3050: UDF” with the “Track” set to “occurrence”, the “Deta
set to “error”, and the “Item Data” set to “error”. The mapper can set additional audit set
if the data will be needed in the generation of the 824. Remember that if the incoming UD
serious mistakes in it, the audit log might not be able to generate more information othe
“Transaction V3050 UDF” in error.

Table 5-2 GS Segment

SegID Element =“GS”

Funct’lIDCd Element Fill in according to IC of transaction set being mappe

App’nSenderCd Element Value from UDF if present.

App’nRcv’rCd Element Value from UDF if present.

DateElement =CURRENTDATE()

TimeElement =LEFT(TIMETOTEXT(CURRENTTIME()), 2) +
MID(TIMETOTEXT (CURRENTTIME()), 4,2)
+RIGHT (TIMETOTEXT(CURRENTTIME()),2)

GroupCtrl# Element Use GCN exitproc, e.g.,
=TEXTTONUMBER(TRIMRIGHT(LEFT(EXIT(“G
CN”, “NULL”, “NULL”), 9)))

RspAgencyCd Element =“X”

VersionReleaseIndustryIDCd
Element

Fill in Version number.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 37

M APPER’ S GUIDE

f the
g

e
pical
posed

al map
uld be
ary

 loops
 loop,
” is
 to a

g
k the

osites
h as
ing

ation

(001)

ntion
 append
ld be
5.2 Translating X12 to UDF

The following sections detail the construction of an X12-to-UDF map.

5.2.1 Map Naming Conventions

In the mapping process, the naming convention for all maps should be determined according
to the destination element. In this case (X12 to UDF), the UDF type tree destination elements
will be used. The executable map should begin with the prefix “E” to indicate that it is an
executable map, while the functional maps should begin with the prefix “f_”. The names o
maps dealing with the enveloping structure of the message should reflect the envelopin
structure used in the UDF.

From a conceptual point of view, a typical transmission is a file composed of one or mor
transactions. There may or may not be multiple transaction types for any given UDF. A ty
transaction is composed of one or more records or loops of records, which, in turn, is com
of one or more elements.

In the case of multiple transaction types being used in a UDF, a functional map may be
necessary to handle the container of the multiple transaction types. For example, if the
transaction types are grouped based upon X12 versions (e.g., V3050, V3070), a function
may be required to map each version. The recommended convention for this example wo
something like “f_MapV3070”. It would follow that there would be a functional map necess
for each of the transaction types using a naming convention such as “f_Map810”.

Within each transaction, a functional map would be necessary for each of the records or
of records. These maps would adopt the naming described by the destination record or
such as “f_810_R001” or “f_810_L004006”, where “R” is used to denote a record and “L
used to denote a loop. In this example, “f_810_R001” would be used to map information
001 record, and “f_810_L004006” would be used to map information to a loop containin
records 004 through 006. The transaction type (843 in this case) is also included to trac
transaction in which the loop or record is used.

Within each record, a functional map may be needed to map individual elements or comp
of elements. Again, the naming should reflect the destination element or composite, suc
“f_810_R001_CPersInfo” or “f_810_R001_MailAddrs”, where “C” is used to denote mapp
to a composite. In this example, “f_810_R001_CPersInfo” would be used to map inform
to a composite named PersInfo, and “f_810_R001_MailAddrs” would be used to map
information to an element named MailAddrs. Note the transaction type (810) and record
are maintained as part of the functional map name for ease of identification.

If, at the element level, further use of functional maps for converting, concatenating,
calculating or other processes of manipulating the data is necessary, the naming conve
should be used to best describe the process. For example, if a function map is needed to
a value for State to the end of a value for City, a name such as “f_AppendState2City” cou
used.
38 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

ile. If
ted to

e of
cifies
g
ithin
UDFs

 the
:

fined

pe

12
5.3 Building the Premap(s)

An incoming UDF file may require one or two stages of preprocessing prior to passing it on to
the main UDF-to-X12 map.

5.3.1 The Premap1 Stage

The (optional) premap1 map should take, as input, the original UDF file and rearrange the data
within it so that there are single addressee contiguous messages within the output file. This is
necessary for message types that use a list of address lines above a single body of message text
(e.g., PADDS). The premap1 stage duplicates the text body after each address line, so that the
resulting output file can be divided into single addressee messages.

5.3.2 The Premap Stage

The normal premap should take, as input, the original UDF file or the output from the premap1
stage if it is used. If the “premap_udf=yes” flag is set in the message description file, the
premap is expected to create the following two output files: an index file that details the
message bounding in the input file and UDF output file and the premapped UDF output f
the “premap_udf=yes” flag is not set in the message description file, the premap is expec
create one output file, an index file that details the message bounding in the input file.

5.3.2.1 The Premap Index Output File

The index file is a list of three field records. Each record references a single message
(transaction) in the input UDF file. The first record field is a number which refers to the siz
the single transaction within the input UDF file. The second record field is a string that spe
the transaction type. (Note that this value is currently useful for IPC UDF-to-X12 mappin
only). The third record field is a number which refers to the size of the single transaction w
the output UDF file. The ECPN translator uses these values to divide the input and output
into single transaction pieces.

5.3.2.2 The Premap UDF Output File

The UDF output file has all alterations necessary to make it possible to properly analyze
message in the regular UDF-to-X12 map. Some alterations that have been used include

• Padding the lines out to a known number of spaces so that optional fields can be de
as fixed length in the UDF-to-X12 type tree.

• Globally filtering out, or replacing specific byte values as dictated by the message ty
rules.

• Placing record initiators on records to make them easily identifiable in the UDF-to-X
map.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 39

M APPER’ S GUIDE

e
e some

e found
PDB),

ldface

p

es,
 bytes

up to
 ID
e used
other
6.0 Addressing Procedures
Throughout this section, the Mercator “EXIT” function is referenced. For a complete
discussion of this function, see Appendix A.

For all X12 messages produced by ECPN, the ISA sender ID qualifier/code (ISA05/06)
corresponds to the ECPN system routing the message:

The LEFT function is necessary because of Mercator’s inability to deal with the null
terminators returned in an EXIT function data structure. The last two input arguments ar
ignored by the translator in both these cases, but Mercator requires all arguments to hav
value to invoke the call. The string “NULL” has no particular significance, other than for
readability and consistency between map families. The remaining sections only include
ISA07/08 and GS02/03 to avoid redundancy.

6.1 Implicit Addressing

This section pertains to message types in which both sender and receiver ID codes can b
within the message body and cross-referenced using ECPN’s trading partner database (T
without referring to a separate table or external information such as a file name. The bo
type indicates portions of rules that should be entered verbatim, whereas italicized print
indicates general instructions needing some interpretation depending on the specific ma
family. Also, map rules given for GS02/03 assume a maximum element length of 15 byt
although some older X12 versions specify shorter lengths (e.g., Rev3010 allows only 12
for each), and the corresponding rules need to be modified in those instances.

6.1.1 UDF-to-X12 Translation

The type of the receiver’s ID code given by the UDF needs to be known for a TPDB look
get the values of ISA07/08. If a map family does not exclusively use a given ID type, the
code can be distinguished by its characteristics. The qualifier values correspond to thos
in element #66 Identification Code Qualifier, which appears in the N1 segment (among

<ISA05> = LEFT(EXIT("ISASNDRQUAL" , "NULL" , "NULL") , 2)

<ISA06> = LEFT(EXIT("ISASNDR" , "NULL" , "NULL") , 15)
40 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

 and
 in the

DF,
ce
places). To avoid confusion, note that these values are not identical for all qualifier elements in
the X12 standard; for example, element #128 Reference Identification Qualifier denotes a
CAGE code using “W7”, instead of the qualifier “33” used for addressing purposes.

For map families in which incoming UDFs are translated to outgoing X12s, such as SPS
SAACONS, the interchange receiver values should correspond to the receiver specified
UDF. The map rules for ISA07/08 are:

where <UDFrecvIDqual> is the appropriate qualifier based on the above table. The
conditional statements bypass the TPDB lookups if the message receiver is “PUBLIC”.

In contrast, map families which always produce an outgoing UDF (i.e., UDF to X12 to U
or “U2X2U”), including ADS and DIFMS, should have ISA07/08 identical to ISA05/06 sin
the system is technically sending the X12 message to itself for retranslation into a UDF:

In both cases, the GS02/03 values should be mapped directly from the UDF without
conversion:

Table 6-1 Trading Partner Identifier Types and Properties

Type name Length Properties Qualifier

DUNS 9 Numeric 1

DUNS+4 13 Numeric 9

DODAAC 6 Alphanumeric 10

CAGE 5 1st and 5th Positions Numeric, Middle 3 Positions
Alphanumeric Excluding the Letters “I” and “O”

33

<ISA07> = IF(<UDFrecvID> = "PUBLIC" , "ZZ" ,

 LEFT(EXIT("ISARECVQUAL" , <UDFrecvIDqual> , <UDFrecvID>) , 2))

<ISA08> = IF(<UDFrecvID> = "PUBLIC" , "PUBLIC" ,

 LEFT(EXIT("ISARECV" , <UDFrecvIDqual> , <UDFrecvID>) , 15))

<ISA07> = LEFT(EXIT("ISASNDRQUAL" , "NULL" , "NULL") , 2)

<ISA08> = LEFT(EXIT("ISASNDR" , "NULL" , "NULL") , 15)

<GS02> = <UDFsndrID>

<GS03> = <UDFrecvID>
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 41

M APPER’ S GUIDE
6.1.2 X12-to-UDF Translation

The sender and receiver in the UDF should be mapped respectively from the GS02 and GS03
of the incoming X12, without conversion:

6.1.3 X12 997 Acknowledgment from X12-to-UDF Translation Audit Log

The audit log for the X12-to-UDF map should be set up to include all sender/receiver
information from the original X12 message, except for U2X2U families which do not require
X12-to-UDF error reporting. Because the 997 acknowledgment is returned to the sender of the
original message, its addressing information can be mapped from the audit log of the original
message in reverse order (excluding ISA05/06 as previously described):

and,

6.1.4 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log

Unlike an incoming X12 which will have its addressing information verified by the system
before translation, it cannot be assumed that a UDF will have adequate information to route an
acknowledgment. Therefore, the sender is specified as the ECPN system for the GS02 (in
addition to ISA05/06), and the receiver (in both GS03 and ISA07/08) is denoted using the name
of the channel from which the original UDF was received. The latter is provided using the
EXIT function INCHANNEL and qualified with “ZZ”:

and

<UDFsndrID> = <GS02>

<UDFrecvID> = <GS03>

<ISA07> = <ISA05 of incoming X12, from audit log>

<ISA08> = <ISA06 " " " >

<GS02> = <GS03 of incoming X12, from audit log>

<GS03> = <GS02 " " " >

<ISA07> = "ZZ"

<ISA08> = LEFT(EXIT("INCHANNEL" , "NULL" , "NULL") , 15)

<GS02> = TRIMRIGHT(LEFT(EXIT("ISASNDR" , "NULL" , "NULL") , 15)))

<GS03> = TRIMRIGHT(LEFT(EXIT("INCHANNEL" , "NULL" , "NULL") , 15)))
42 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

tner’s
e is

 with

lank

es in

e

al
tion
 from

ookup
lue
6.2 External Addressing – SAACONS Example

Certain UDFs require information external to the message content to identify the sender and/or
receiver. For example, a SAACONS message only contains the commercial trading par
ID, identifying the Government site via a three-digit file name extension. A separate tabl
cross-referenced to find the site ID (DODAAC in this case) based on the extension. The
implications of using an external look-up approach are outlined in this section, beginning
some general guidelines:

• The type tree representing the lookup table should allow for comments/faulty entries/b
lines without ignoring valid data or failing translation. One approach is to create a
partitioned “Record” group.

• Whenever referring to table entries in the Mercator LOOKUP function, use the
TRIMLEFT function to remove any leading spaces. (Mercator considers leading spac
a left-justified field to be part of the data, which would affect comparisons).

6.2.1 UDF-to-X12 Translation

A functional map is used to perform the external lookup for GS02, as a workaround to th
limitation that EXIT functions cannot be nested:

where the right-most 3 bytes of the UDF file name (i.e., the extension) and the entire
SAACONS look-up file are the input arguments. The rule used in the functional map is:

where SiteIDCdElement and SiteFilenameIDCdElement denote the DODAACs and
corresponding file name extensions in the table, respectively, and FN_ext_ID is the actu
extension. If no match is found (i.e., the LOOKUP evaluates to NONE) the EITHER func
causes the FAIL function to be invoked, which triggers the same error condition resulting
a TPDB look-up failure. The first argument is an error message displayed to the ECPN
administrator, which includes the unrecognized file name extension and the name of the l
table for troubleshooting purposes. The last argument, consisting of 12 blanks, is the va
returned by “FAIL”.

=f_LookupDODAAC(RIGHT(LEFT(exit("REMOTEFILENAME" , "NULL" , "NULL") ,

 30), 3), SAACONS_DB)

=EITHER(TRIMLEFT(LOOKUP(SiteIDCdElement:.:SAACONS_DB ,

 TRIMLEFT(SiteFilenameIDCdElement:.:SAACONS_DB) = FN_ext_ID)) ,

 TRIMRIGHT(LEFT(exit("FAIL" ,

 ("UDF Filename Extension Site-ID """ +

 FN_ext_ID + """ not found in " + GETFILENAME(SAACONS_DB)) ,

 " ") , 12)))
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 43

M APPER’ S GUIDE

is

sage is
e, the
nced

will

e that
6.2.2 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log

The 824 acknowledgment would not require any external addressing if it were being sent as an
X12 message, as is the case with the 997 acknowledgment. However, because it will be
translated back into UDF and returned to the original sender, the filename extension from the
original incoming UDF must be preserved. The extension is used instead of the corresponding
DODAAC because an 824 should be generated and returned to the original sender regardless
of whether it can be found in the current look-up table:

Enclosing the value in brackets will enable the X12-to-UDF map to distinguish it as a file name
extension rather than a DODAAC, which would normally be expected in GS03.

6.2.3 X12-to-UDF Translation

To produce the correct file name extension, the function SETSITEID is called to set the value
of the ECPN file name variable “sid”. The corresponding map rule is used where GS03
written to Record00:

The conditional checks to see whether GS03 is enclosed in brackets, indicating the mes
an 824 acknowledgment, in which case it passes the extension value directly. Otherwis
value is assumed to be the DODAAC of the receiving SAACONS site and is cross-refere
to obtain the correct extension. If the LOOKUP fails, the null character is passed which
automatically trigger an error condition with an appropriate error message. Because
SETSITEID returns its last input argument, the variable-length GS03 is padded to ensur
LEFT truncates the null-terminator.

="[" + RIGHT(LEFT(exit("REMOTEFILENAME" , "NULL" , "NULL"), 30), 3) + "]"

=IF(LEFT(App'nRcv'rCd Element:GS , 1) = "[" ,

 LEFT(exit("SETSITEID" , MID(App'nRcv'rCd Element:GS , 2 , 3) ,

 (App'nRcv'rCd Element:GS + " ")) , 15) ,

 LEFT(exit("SETSITEID" , EITHER(TRIMLEFT(

 LOOKUP(SiteFilenameIDCd Element:.:SAACONS_DB ,

 TRIMLEFT(SiteIDCd Element:.:SAACONS_DB) = GS03)) ,

 SYMBOL(0)) ,

 (GS03 + " ")) , 15))
44 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

umed

pped
7 is

nding
cate
d by

6.3 Combined Implicit/External Addressing – IPC Example

Although the IPC UDF contains all sender and receiver information within the message body,
the trading partner (receiver) could be identified using either a CAGE code or a DSSN. Because
the latter is not included in the TPDB, an external look-up table is required.

6.3.1 UDF-to-X12 Translation

The addressing for ISA07/08 is basically a two-step process. The receiver’s ID is first ass
to be a CAGE code, so the map rule for ISA07 is:

The conditional verifies a successful TPDB lookup, in which case the returned value is ma
to ISA07. If the lookup fails, the code is assumed to be a DSSN, and the map f_VTISA0
called to perform the external lookup:

If the LOOKUP successfully matches the ID to a DSSN match in the table, the correspo
value for ISA07 is passed to f_Reset; otherwise, the map is invoked with “{none}” to indi
a look-up failure. Finally, f_Reset determines whether to reset the error condition triggere
the original TPDB look-up failure (using RESETERROR) depending on the result of the
external lookup:

Similar steps are taken to obtain ISA08.

=IF(PRESENT(LEFT(exit("ISARECVQUAL" , "33" ,

 MID(#820Ptnr_VendorID Element:.:UDF , 2 , 5)) , 15)) ,

 LEFT(exit("ISARECVQUAL" , "33" ,

 MID(#820Ptnr_VendorID Element:.:UDF , 2 , 5)) , 15) ,

 f_VTISA07(UDF , VendorInfo))

=EITHER(f_Reset(LOOKUP(ISA07 Element Vendor:.:VendorInfo,

 #820Ptnr_DSSN Element:.:UDF = DSSN Element Vendor:.:VendorInfo &

 #820Ptnr_VendorID Element:.:UDF = Vendor_ID Element Vendor:.:VendorInfo)) ,

 f_Reset("{none}"))

=IF(In1 = "{none}" , NONE , LEFT(EXIT("RESETERROR" , "NULL" , In1 + " ") ,

 2))
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 45

M APPER’ S GUIDE

and

ng

ily

th an
tors
errors.

,
tes of
 tape
7.0 Integration Procedures
This appendix describes how to add an externally developed map family to the ECPN software.
For each new map family (UDF message type) you create, you may add a package of maps and
supporting files to an ECPN system that has been previously loaded with a translation segment
provided by INRI. This package you add should consist of the following components:

• A set of maps for the UDF message type (described in Section 3.0) to perform:

– UDF-to-X12 translation

– X12-to-UDF translation

– (optional) UDF-to-X12 premap1 to preprocess UDF input

– (optional) UDF-to-X12 premap to preprocess UDF input

– (optional) 824 X12 (UDF-to-X12 acknowledgment) generation

– (optional) 997 X12 (X12-to-UDF acknowledgment) generation

• Any additional look-up tables needed for input to the above UDF-to-X12 translation
X12-to-UDF translation.

• (optional) Map family help documents, with a main index HTML document referenci
any other provided documents.

• A message description file detailing the names and processing rules for the map fam
(described in Section C), and the optional HTML index file for online help.

While it is possible to install a new map family manually, it is best to create a package wi
accompanying installation script to do the installation. This allows the ECPN Administra
to reinstall the new map family after a new translation segment is loaded and eliminates

The following installation script should be used to install your package. Copy it into a file
make it executable (e.g., chmod a+x install_maps.sh), add your file names within the quo
the variables, place it into a directory with your files, and archive the files into a package (a
archive).

#!/bin/sh

This script installs a map family on an ECPN system that has
been loaded with a translation segment.
It should reside in the same directory with the map,
message description, documentation, etc. files that
are getting installed.
PLACE YOUR MAP FAMILY NAME WITHIN QUOTES. THIS MUST ALSO BE
THE NAME OF YOUR MESSAGE DESCRIPTION FILE:
e.g.
MAP_FAM="MY_UDF"
46 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
MAP_FAM=""

PLACE YOUR MAPS (*.hp files) WITHIN QUOTES:
e.g.
MAP_FILES="x2u.hp u2x.hp 824gen.hp 997gen.hp premap.hp"

MAP_FILES=""

PLACE YOUR LOOKUP TABLES (*.tbl files) WITHIN QUOTES:
e.g.
LOOKUP_TABLES="accnt2addr.tbl accnt2name.tbl"

LOOKUP_TABLES=""

PLACE YOUR DOC (*.html and *.pdf files) WITHIN QUOTES:
e.g.
DOC_FILES="my_udf_index.html my_udf_spec.pdf my_udf_ref.pdf"

DOC_FILES=""

----- END USER MOD SECTION ------------

InstallFiles() {
if ["X$filelist" != "X"]; then

for f in $filelist
do
if [! -e ./$f]; then

echo "$f does not exist in local directory."
echo "Exiting with ERROR."
exit 1

fi

if [! -d $dest]; then
mkdir -p $dest

fi
echo "copying $f to $dest"
cp ./$f $dest
chown $owner $dest/$f
chmod $mode $dest/$f

done
fi

}

Check for root user to run...
user_name=`whoami’
if [x$user_name != "xroot"] ; then

echo "You must be root to run this script."
exit 1
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 47

M APPER’ S GUIDE
fi

mode=664
owner=ecpn:hawk

filelist=$MAP_FAM
dest=/h/data/global/EC/Messages/MessageDesc

InstallFiles

filelist=$MAP_FILES
dest=/h/data/global/EC/Messages/Maps/$MAP_FAM

InstallFiles

filelist=$LOOKUP_TABLES
dest=/h/data/global/EC/Messages/Maps/$MAP_FAM

InstallFiles

filelist=$DOC_FILES
dest=/h/data/local/EC/html/MapDocs/$MAP_FAM

InstallFiles

Put the map family name in TOC file if not already in it:
in_there=‘grep -c "^${MAP_FAM}$"
/h/data/global/EC/Messages/MessageDesc/TOC’

if ["X$in_there" = "X0"]; then
echo $MAP_FAM >> /h/data/global/EC/Messages/MessageDesc/TOC

fi

Once the package is created, it may be installed on a loaded ECPN system by extracting the
archive and running the install script (as root). You must stop and restart the ECPN software
before the new map family is available for channel configuration.
48 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

 and
cator
he
ses the
CPN
g2).
are

r

t

.

 string
e used

vokes
as
Appendix A EXIT Functions
Mercator provides the ability to temporarily “exit” the map to perform external processing,
then reenter the map to continue processing. This functionality is invoked using the Mer
EXIT function when the EXIT function is invoked. The map passes processing back to t
ECPN translator (temporarily), and the ECPN translator processes the request and pas
results back to the map. This Appendix includes all EXIT functions that are supported in E
Version 2.2. The general usage of an EXIT function is =EXIT(Function_Name, Arg1, Ar
Mercator requires values for both arguments to invoke the function. Unused arguments
denoted by the string “NULL”.

Note that several exitprocs use a parameter qualifier when accessing the trading partne
database. The list of these values is as follows:

838FOUND

Indicates whether an 838 Trading Partner Profile was found in the TPDB for the most recen
843 Response to RFQ received; the match is based on the value of GS02. This is a
SAACONS-specific function.

RETURN VALUE FORMAT: Either “Y” or “N”, depending on whether an 838 was found

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

APPENDLOG

This function appends the passed string to the daily (channel-based) translation log. The
is time and date stamped by the translator. The daily (channel-based) translation logs ar
for map family specific message reporting capabilities, in which the message reporter in
a handler to parse these daily logs to create daily, weekly, and/or monthly data reports,
needed.

RETURN VALUE FORMAT: “NULL”

ARGUMENT1: The string to append to the translation log.

ARGUMENT2: “NULL”

01 or 09 DUNS

33 CAGE

M3 DSSN

10 DODAAC
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 49

M APPER’ S GUIDE

wn in
AUDITLOG

Instructs the translator to append the passed string to the audit log at translation completion.
These strings are accumulated during the translation. At the end of translation, the audit log is
appended with the following format.

START_ADDL_AUDIT
<string1>
<string2>
 .
 .
 .
<stringn>

END_ADDL_AUDIT

This functionality is useful in a sequence of translations where the audit log will be used in a
subsequent map (e.g., x824gen map).

RETURN VALUE FORMAT: The string passed in ARGUMENT1.

ARGUMENT1: The string to append.

ARGUMENT2: “NULL”

FAIL

Forces a message failure condition. The description passed in ARGUMENT1 will be sho
the error log without modification.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.

ARGUMENT1: Error description message.

ARGUMENT2: String for function to echo back.

FILETOR

Returns the time of receipt of the received file being translated.

RETURN VALUE FORMAT: YYYYMMDDHHMMSS

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”
50 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

 UDF
e that

 in one
 can

 then the

en
GCN

Obtains a site-specific unique (sequential) functional group control number.

RETURN VALUE FORMAT: 9 bytes/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

GETVAR

This function retrieves a string variable’s string value. It can be called by any map in a
translation series to get a variable’s value. For the variable value set functionality, see
SETVAR.

A translation sequence is defined by the series of translations done to create an X12 or
message, and its associated acknowledgments or ancillary parts (e.g., the 838 messag
accompanies an 843 during X12-to-UDF SAACONS translation). For UDF-to-X12
translations, the premap(s) are also part of the sequence. This function can set a variable
part of a map and retrieve that value in another part of the same map. Also, this function
pass values on to the next map in a sequence (e.g., the premap can set a variable, and
UDF-to-X12 map can access that value).

RETURN VALUE FORMAT: The variable’s value, or “NULL” if not set.

ARGUMENT1: The variable name.

ARGUMENT2: “NULL”

GSADDR

Performs a TPDB lookup to obtain the functional group ID code of a trading partner, giv
some other ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Trading partner ID code qualifier; values = “01”, “09”, “33”, “M3”, or “10”

ARGUMENT2: Trading partner ID code

ICN

Obtains a site-specific unique (sequential) interchange control number.

RETURN VALUE FORMAT: 9 bytes/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 51

M APPER’ S GUIDE

ome

iven

he
INCHANNEL

Returns the name of the channel on which the message was originally received.

RETURN VALUE FORMAT: 19 byte/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

ISARECV

Performs a TPDB lookup to obtain the interchange ID code of a trading partner, given s
other ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Trading partner ID code qualifier; values = “01”, “09”, “33”, “M3”, or “10”

ARGUMENT2: Trading partner ID code

ISARECVQUAL

Performs a TPDB lookup to obtain the interchange ID code qualifier of a trading partner, g
some other ID code value and qualifier.

RETURN VALUE FORMAT: 2 bytes/left-justified/space-padded

ARGUMENT1: Trading partner ID code qualifier; values = “01”, “09”, “33”, “M3”, or “10”

ARGUMENT2: Trading partner ID code

ISASNDR

Returns the ID code of the ECPN system as defined in the System Setup database or t
channel-specific value if present.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”
52 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

ing
ISASNDRQUAL

Returns the ID code qualifier of the ECPN system as defined in the System Setup database or
the channel-specific value if present.

RETURN VALUE FORMAT: 2 bytes/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

LOOKUP FAIL

Forces a message failure condition for a database or table look-up failure.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.

ARGUMENT1: Error description message.

ARGUMENT2: String for function to echo back.

MSN

Returns the message sequence number (MSN) of the message being translated (outgo
X12-to-UDF translations only).

RETURN VALUE FORMAT: SNNNNNNNN/YYYYMMDD

where S = the single-character site ID

NNNNNNNN = the numeric (0 padded) sequence

YYYY = the 4-digit year

MM = the (0 padded) month

DD = the (0 padded) day

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

OUTCHANNEL

Returns the name of the outgoing channel. (X12-to-UDF translation only)

RETURN VALUE FORMAT: 19 byte/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 53

M APPER’ S GUIDE

 name
PREVXSTATUS

Returns the translation status code of the previous translation. This function is useful when the
map is in a sequence of translations (e.g., the 824 Audit Log map after a UDF-to-X12
translation).

RETURN VALUE FORMAT: A string representation of:

XLTR_UDF2X12_OK = 171

XLTR_UDF2X12_ERR = 172

XLTR_LOOKUP_ERR = 173

XLTR_X122UDF_OK = 174

XLTR_X122UDF_ERR = 175

XLTR_X997_OK = 176

XLTR_X997_ERR = 177

XLTR_X824_OK = 178

XLTR_X824_ERR = 179

XLTR_PREMAP_OK = 180

XLTR_PREMAP_ERR = 181

XLTR_OTHER_ERR = 182

XLTR_838_ERR = 183

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”

REMOTEFILENAME

Returns the original name of the file that contained the message being translated. This file
is the name of the file as it was received on the ECPN system.

RETURN VALUE FORMAT: 30 byte/left-justified/space-padded

ARGUMENT1: “NULL”

ARGUMENT2: “NULL”
54 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

eries
ing that

r UDF

e that

an be
e same
, the

the
tions
the
SETSITEID

Sets the value of the <sid> file name variable, which is exclusively used for file name site
identification; currently, only SAACONS uses this function.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.

ARGUMENT1: Value to assign <sid> file name variable.

ARGUMENT2: String for function to echo back.

SETVAR

This function sets a string variable’s value. It can be called by any map in a translation s
to set a variable name/value pair, so that later, the variable’s value can be requested dur
same translation sequence. For the variable value request functionality, see GETVAR. A
translation sequence is defined by the series of translations performed to create an X12 o
message, and its associated acknowledgments or ancillary parts (e.g., the 838 messag
accompanies an 843 during X12-to-UDF SAACONS translation).

For UDF-to-X12 translations, the premap(s) are also part of the sequence. This function c
used to set a variable in one part of a map and to retrieve that value in another part of th
map. Also, this function can be used to pass values to the next map in a sequence (e.g.
premap can set a variable, and then the UDF-to-X12 map can access that value, or the
X12-to-UDF map can set a variable, and the X12 997gen map can access that value.)

RETURN VALUE FORMAT: “NULL”

ARGUMENT1: The variable name.

ARGUMENT2: The variable’s value.

SHLIB=<libraryname>

Instructs the translator to load a shared library and to invoke the specified function with
specified parameters. Note that an HP-UX shared library must be provided with the func
contained prior to using this EXIT function. The <libraryname> should be replaced with
actual library to invoke (e.g., mylib.sl).

RETURN VALUE FORMAT: The string value produced by the invoked shared library
function.

ARGUMENT1: The function name within the shared library.

ARGUMENT2: The string to be passed as input to the function.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 55

M APPER’ S GUIDE

ode);

 other

out
ode);

lly the
it
TPDBLOOKUP

Performs a TPDB lookup to obtain some type of ID code of a trading partner, given some other
ID code value and qualifier. If the lookup fails, the translation status is set to
LOOKUP_FAILURE. For a non-destructive TPDB look-up, see TPDBLOOKUPNOERR.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Qualifiers of given and requested IC code types, comma-separated without
spaces (e.g., “01,33” means you are passing in a DUNS Number and want the CAGE C
values = “01”, “09”, “33”, “M3”, or “10”

ARGUMENT2: Given trading partner ID code.

TPDBLOOKUPNOERR

Performs a TPDB lookup to obtain some type of ID code of a trading partner, given some
ID code value and qualifier.

RETURN VALUE FORMAT: 15 bytes/left-justified/space-padded

ARGUMENT1: Qualifiers of given and requested IC code types, comma-separated with
spaces (e.g., “01,33” means you are passing in a DUNS Number and want the CAGE C
values = “01”, “09”, “33”, “M3”, or “10”

ARGUMENT2: Given trading partner ID code.

TRANSFAIL

Forces a message failure condition for a translation failure.

RETURN VALUE FORMAT: Exact duplicate of ARGUMENT2.

ARGUMENT1: Error description message.

ARGUMENT2: String for function to echo back.

VAR=<varname>

Used to set a transmit file name variable from the map. The <varname> portion is actua
variable to set. Example: VAR=SITENAME would set the SITENAME variable for transm
file name resolution. For a description of transmit file name resolution, see the Software User’s
Guide for Electronic Commerce Processing Node.

RETURN VALUE FORMAT: “NULL”

ARGUMENT1: The value to set in the varname variable.

ARGUMENT2: “NULL”
56 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

note

 note

r the

r the

ap

an

ails,
Appendix B Message Description File
The message description file contains fields that are used by the ECPN software to control map
execution and transmit file name resolution. It also contains a full description field that is
displayed to the ECPN administrator during channel configuration.

Each message description field used by the ECPN software and its usage is as follows:

• x2u_map

The file name (and possible location) of the X12-to-UDF map file to be invoked. (See
below)

• u2x_map

The file name (and possible location) of the UDF-to-X12 map file to be invoked. (See
below)

• x824_map

The file name (and possible location) of the X12 824gen map file to be invoked afte
UDF-to-X12 translation. (See note below)

• x997_map

The file name (and possible location) of the X12 997gen map file to be invoked afte
X12-to-UDF translation. (See note below)

• premap_udf

A “yes” or “no” value. If set to “yes”, an output UDF file is expected when running prem
(in addition to the index file). The output UDF is used as input to the u2x_map.

• premap1

The file name (and possible location) of the premap1 map to be invoked prior to the
regular premap. (See note below)

• premap

The file name (and possible location) of the premap map to be invoked prior to the
u2x_map. (See note below)

• x2u838_map

A SAACONS-specific map to be invoked on the 838 X12 file for transmit along with
843 message. (See note below)

• reject838x824_map

A SAACONS-specific map to be invoked on the 843 X12 file when the x2u838_map f
or there is no associated 838. (See note below)
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 57

M APPER’ S GUIDE

o the
te of

ays
ating

 is to
hould

o the

egular

ng
age
nel
ere
he
or a
, the

e user
• addl_inputs

A comma-separated list of file names (and possible locations) that will be provided t
u2x_map and the x2u_map during invocation. Each file can have an additional attribu
“;LOCK” following it. If the lock token is set for a file, then the translator locks this file
before passing it to the map. An input file that will be updated by the map should alw
use the lock token to prevent other parallel translation events from accessing or upd
the file while it is unstable. (See note below)

An example addl_inputs line:

addl_inputs: lookup1.tab, lookup2.tab;LOCK, lookup3.tab

The second look-up table is locked by the translator prior to passing to the map. It is
unlocked after the map completes. This is a cooperative lock, where the file is only
protected from multiple access if all accessors use the lock token. So if an input file
be used by more than one map family, then each map family that accesses this file s
use the lock token for that file.

• addl_outputs

A comma-separated list of file names (and possible locations) that will be provided t
u2x_map and the x2u_map during invocation. It is only useful during X12-to-UDF
translation, where each additional output will be sent to the same destination as the r
(generated) UDF. (See note below)

• split_route

 This field has the following possible values: “ISA”, “GS”, or “ST”. It defines the outgoi
(X12-to-UDF) translation granularity. This granularity defines the amount of the mess
that gets passed to the X12-to-UDF maps for a single translation. Through the chan
configuration, the ECPN administrator can refine the granularity to a lower level (wh
ISA is the highest, and ST is the lowest). But the ECPN administrator cannot raise t
granularity above the value that is set in this field. Note that since the default value f
UDF message type is “GS”, if the field is not present in the message description file
X12-to-UDF map will receive a single GS (and possibly multiple STs within it) per
invocation.

• docs

This is an html file that serves as the table of contents page in a web browser when th
chooses to view the UDF and X12 specifications for this system.
58 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

le

he
time.

s list,
 is

 to
he
• variables

This is a semicolon separated list of variable names that is presented to the ECPN
administrator for transmit file name building. The format of each element is a readab
string, followed by a curly-brace-enclosed variable name. The X12-to-UDF map is
expected to set the value of each of these variables during translation by using the
VAR=<var name> exitproc.

The following is an example message description file:

//
// A line starting with "//" is treated as a comment line.
premap:saaconspremap.hp
premap_udf:yes
x2u_map:saaconsx2u.hp
u2x_map:saaconsu2x.hp
x824_map:saaconsx824.hp
x997_map:saaconsx997.hp
x2u838_map:saaconsx838.hp
reject838x824_map:saaconsreject838x824.hp
addl_inputs:saacnsdb.tbl,saumconv.tbl
docs:saaconsdocs.html
variables:Site ID {saacons-sid};Transaction Type {saacons-ttype}
shortdesc:SAACONS
fulldesc:
NAME

SAACONS - Standard Army Automated Contracting System

MESSAGE TRANSLATION
SAACONS message translation supports outbound (UDF->X12)

NOTE: Map, additional input, and additional output file names and locations can be
specified by using a full path and name or a name only. Alternatively, any or all of t
path and/or name can be specified using variables that are evaluated at execution
These are not the same variables as those specified in the “variables” message
description, above. These variables, and their expansion rules are as follows:

“%datafiles” – Expands to the value of the environment variable:
VIDS_DATAFILES or to /h/data/global/EC if VIDS_DATAFILES is not set.

“%channel” – Expands to the value of the channel name. For instance, during
X12-to-UDF translation for the SAACONS FTP1 channel, if the SAACONS
message description has the value cross_ref_%channel.tab: in the addl_input
then the file /h/data/global/EC/Messages/Maps/SAACONS/cross_ref_FTP1.tab
passed to the X12-to-UDF map at invocation.

“%map_fam” – Expands to the value of the message type.

After path/name expansion, if there is no leading slash (‘/’), then the file is assumed
be in the $VIDS_DATAFILES/Messages/Maps/<map family name> directory. For t
SAACONS map family, on a production or test platform, this would be
/h/data/global/EC/Messages/Maps/SAACONS
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 59

M APPER’ S GUIDE
824, 836, 840, 850, and 860 transactions and inbound
(X12->UDF) 824 and 843 transactions. Translation is based on
the 3010 Rework Implementation Convention and the
corresponding SAACONS UDF.

For each 843 (Response to Request for Quotation) received,
the X12 838 (Trading Partner Profile) of the bidding vendor is
retrieved from the Trading Partner Database, translated to SAACONS UDF,
and transmitted to the SAACONS site along with the 843. If the 838 is
missing or invalid, ECPN produces an X12 824 failure acknowledgment
detailing the problem and returns the 824 to the vendor, without
transmitting the 843 to the SAACONS site. ECPN copies the addressing
and other information for the 824 failure acknowledgment from the 843.

TRANSACTION TYPES
Transaction Types UDF->X12 X12->UDF

824 Application Advice X X
836 Contract Award X

 838 Trading Partner Profile X*
840 Request for Quotation X
843 Response to Request for Quotation X
850 Purchase Order X
860 Purchase Order Change X

* Used only for internal processing of 843 bids. An 838 cannot be
transmitted directly from a vendor to a SAACONS site.

ACKNOWLEDGMENT MESSAGES
For each UDF->X12 message translation, an 824 acknowledgment is
produced indicating the success of the translation and the location
and type of any errors. The 824 is automatically returned to the
sender of the UDF message, and the addressing fields reflect the
ECPN system as the sender and the SAACONS channel name as the
receiver.

For each X12->UDF message translation, a 997 acknowledgment is
produced indicating the success of the translation and the location
and type of any errors. The 997 is automatically returned to the
sender of the X12 message, and the addressing fields are copied
from the original X12 message, except for the ISA05/06 fields, which
are taken from the System Setup Database.

CHANNEL SETUP
 FILE NAME VARIABLES

Outgoing file names for SAACONS channels should be entered as follows:

{saacons-ttype}{yr}{jul}{cccc}.{saacons-sid}

where {yr}, {jul}, and {cccc} are standard ECPN file name variables
that will produce the current 2-digit year, julian date, and value of a
4-digit counter that is incremented independently for each channel.
The two SAACONS-specific file name variables are explained below.

{saacons-ttype}
This variable identifies the transaction type contained within
the file with a 1-letter identifier ("b" for 843s, "v" for 838s,
60 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
or "f" for 824s). Place this variable at the beginning of the
file name.

{saacons-sid}
This variable specifies the 3-digit file name suffix used to
identify the SAACONS site. This suffix is assigned during the
X12->UDF translation process. Place this variable at the end
of the file name.

 OTHER REQUIRED SETTINGS
In the GENERAL tab of the edit channel window, set the channel to
connect every 10 minutes (or more frequently) between 00:00 and 24:00
every day.

In the FTP TRANSFER tab of the edit channel window, select MULTIPLE
as the file TRANSFER MODE.

In the ADMIN tab of the edit channel window, you should enable
all 997/824 acknowledgments and send them on the incoming channel,
unless the SAACONS site specifies otherwise.

ROUTING
To set up routing from a SAACONS site to trading partners, use the
FILE/VAN NAME PATTERN as the routing criteria. To set up routing
from trading partners to a SAACONS site, use the ISA/GS TO (GS03)
as the routing criteria.

ADDRESSING
 UDF->X12 ADDRESSING

ISA05/06 - INTERCHANGE SENDER ID QUALIFIER/ID CODE
The ECPN System Interchange ID Qualifier/Code values specified in the
System Setup Database are inserted into ISA05/06. These values are
overridden for an X12 channel if ISA05/06 values are specified in the
CONVERSION tab of the edit channel window.

ISA07/08 - INTERCHANGE RECEIVER ID QUALIFIER/ID CODE
If the TPID field in Record 01 of the UDF message contains either
"PUBLIC" or "DAPS," that value is directly inserted into ISA08 and
"ZZ" is inserted into ISA07. Otherwise, the value in the TPID field in
Record 01 is assumed to be the vendor CAGE Code and is cross-
referenced against the Trading Partner Database to obtain that vendor’s
preferred Interchange ID Qualifier/Code values for insertion into
ISA07/08. Any of these values is overridden for an X12 channel if
ISA07/08 values are specified in the CONVERSION tab of the edit channel
window.

ISA13 - INTERCHANGE CONTROL NUMBER (ICN)
The ECPN System Interchange Control Number, which is incremented for
each outgoing X12 interchange and bound by maximum and minimum
allowable values set in the System Setup Database, is inserted into
ISA13.

GS02 - FUNCTIONAL GROUP SENDER
The 3-digit site ID file name extension is cross-referenced against
the table file saacnsdb.tbl to obtain the DODAAN of the sending SAACONS
site, which is inserted into GS02.
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 61

M APPER’ S GUIDE
GS03 - FUNCTIONAL GROUP RECEIVER
If the TPID field in Record 01 of the UDF message contains either
"PUBLIC" or "DAPS," that value is directly inserted into GS03.
Otherwise, the value in the TPID field in Record 01 is assumed to
be the vendor CAGE Code and is cross-referenced against the Trading
Partner Database to obtain that vendor’s preferred Functional Group
ID Code for insertion into GS03.

GS06 - FUNCTIONAL GROUP CONTROL NUMBER (GCN)
The ECPN System Group Control Number, which is incremented for each
outgoing X12 functional group and bound by maximum and minimum
allowable values set in the System Setup Database, is inserted into
GS06.

 X12->UDF ADDRESSING
The look-up table saacnsdb.tbl is queried for the site ID file name
extension corresponding to the receiving SAACONS site, using the DODAAN
given in element GS03 (Functional Group Receiver). This 3-digit site
ID is assigned to the variable {saacons-sid}, which should be located
at the end of the outgoing file name of each SAACONS channel.

The vendor’s CAGE Code is located within the body of the X12 message
(within an N1 loop) and is directly inserted into the TPID field in
Record 01. If no CAGE Code is found, ECPN attempts to find either a
DUNS Number or DODAAC and query the Trading Partner Database to obtain
the CAGE Code.

LOOK-UP TABLES
 saacnsdb.tbl
 FORMAT

Comment lines begin with the character #.

Each line in the look-up table contains a single entry, including the
site ID file name extension (3 characters) and the DODAAN (2-12
characters) for a given SAACONS site, delimited by a comma. Any lines
that do not match this format are ignored during look up.

No spaces are necessary; any spaces preceding or following either the
file name extensions or DODAAN codes are disregarded.

 USAGE
 During UDF->X12 translation, the file name extension of the
 UDF file sent from the SAACONS site is looked up in this table to
 obtain the corresponding DoD Activity Address Number (DODAAN) for
 that site, which is inserted in element GS02 of the mapped X12
 message.

 During X12->UDF translation, the value of GS03 in the X12 message
 sent from a vendor to a SAACONS site (assumed to be the DODAAN of
 the receiving SAACONS site) is looked up in the table to
 obtain the corresponding file name extension for the
 resulting UDF file.

 In either case, an unsuccessful look up (non-match) results in a
 translation failure.
62 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
 saumconv.tbl
 FORMAT
 Comment lines begin with the character #.

 Each line in the look-up table contains a single entry, including the

UDF Code Value (2 characters), the X12 Code Value (2 characters), and
the description (1-n characters), delimited by a comma. Any lines
that do not match this format are ignored during look up.

 No spaces are necessary; any spaces preceding or following any of the

code values or descriptions are disregarded.

 USAGE
 During translation (either direction), each occurrence of the Unit

or Basis for Measurement Code is mapped using this table to convert
between the ANSI X12 standard set of values and the set of code
values used by the SAACONS sites. If a match is not found in this
table, then the received value is mapped directly.

CAUTION: The maps must be modified to recognize any Unit of

 Measurement Codes which are added to this table; otherwise, those
values will be considered invalid during translation.

REFERENCES
 Type IC specification IC version # UDF specification UDF date

===
 824 3010Rework_X12DODIC_ 003010R824_1 saacons_udf_824.pdf 11/25/96

 824.pdf

 836 3010Rework_X12DODIC_ 003010R836_1 saacons_udf_836.pdf 11/25/96

 836.pdf

 838 3070Rework_X12FedIC_ 003070F838_0 838saacons_udf.pdf 08/11/98

 838.pdf

 840 3010Rework_X12DODIC_ 003010R840_1 saacons_udf_840.pdf 11/25/96

 840.pdf

 843 3010Rework_X12DODIC_ 003010R843_1 saacons_udf_843.pdf 10/21/96

 843.pdf

 850 3010Rework_X12DODIC_ 003010R850_1 saacons_udf_850.pdf 10/25/96

 850.pdf

 860 3010Rework_X12DODIC_ 003010R860_1 saacons_udf_860.pdf 01/27/97

 860.pdf

 997 3010Rework_X12DODIC_ 003010R997_0 (N/A) (N/A)

 997.pdf
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 63

M APPER’ S GUIDE

e of
e

n,
an
tions).

k to

API

010

 to

s

fields
f the

fail.
Appendix C TESTAPI Map Family
The Mercator EXIT functions, as defined in Appendix A, can help you understand the map to
translator API. To assist with this, the TESTAPI map family is provided. This map family can
be used, as a translation type, so an ECPN system can be configured to receive a UDF message
on a TESTAPI type channel or to send an X12 message to a TESTAPI type channel. Although
the message being received or transmitted is the primary input to each of the TESTAPI maps,
the additional input and additional output files provide the real value as follows:

• The additional input file, exitproc.tbl, contains records, each of which include the nam
the EXIT function to invoke and the two parameters to pass to the EXIT function. Th
initial version of this file contains most of the EXIT functions and the associated
parameters. In addition, through the edit channel window/edit look-up tables functio
more functions (as defined in Appendix A) can be added and different parameter pairs c
be used to further exercise each EXIT function (e.g., both success and failure condi

• The additional output file, results.tbl, will be generated for each translation and will
include each record line from the additional input file with the results (as passed bac
the map) appended.

The following test datafiles are provided in the /h/data/global/EC/Messages/Maps/TEST
directory:

• sample.x12 – data used for an X12-to-UDF message translation (map supports V4
-824, 836, 840, 843, 850, 855, 860, 865).

• sample.udf – data used for a UDF-to-X12 message translation.

• tpdb_filler – data used for creating the trading partner database to perform lookups.

• exitproc.tbl – data used for an X12-to-UDF or UDF-to-X12 message translation and
contains a list of all EXIT functions to be invoked, along with the parameters to pass
each.

Format and usage of exitproc.tbl:

Each line has three fields that are delimited by semicolons. The first field is required and
contains the name of the exitproc (in uppercase). The second and third fields are used a
arguments to the specified exitproc. If these arguments are not given, by default, these
will be set to “NULL”. No spaces are necessary; any spaces preceding or following any o
field values will be disregarded. Any line not matching this format will cause the map to
64 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE

 is an

e

ll be
enu

, the

except

heck
.g.

y

 be

 The
ortion

ary

X12

ysis.
On a system loaded with ECPN (at least) version 2.2 and ECPN Translation segment (at least)
Version 1.1, the following configuration is required. For detailed instructions for each of these
steps, see the Software User’s Guide for Electronic Commerce Processing Node:

• Configure the system setup database as described in the Software User’s Guide for
Electronic Commerce Processing Node.

• Create an FTP channel to pull in the CCR data. The node type MUST be CCR, which
option you must chose at channel creation time. Make the “pull from path” point to a
directory you create, and the file name pattern should be “tpdb_filler”.

• Copy the /h/data/global/EC/Messages/Maps/TESTAPI/tpdb_filler file to your created
“pull from” directory.

• Turn on your CCR channel. This will pull and remove the “tpdb_filler” file (the remov
operation is the reason you did not “pull” it directly from the original location). The
messages within the file will be parsed, and the trading partner database (TPDB) wi
populated. This will take a few minutes. You may view the TPDB from the databases m
option. Select Refresh (CTRL-R), to watch it be populated. When it stops populating
processing is complete.

• Create an X12 channel to pull in an X12 message. The node type should be anything
CCR, and the protocol should be FTP. The “pull from path” should be a temporary
directory you create, and the file name pattern should be “sample.x12”. Turn off the “c
reply route” option. The “push to path and name” is required, but can be anything (e
“/tmp/{ccc}”).

• Copy the /h/data/global/EC/Messages/Maps/TESTAPI/sample.x12 to your temporar
directory.

• Create a TESTAPI type UDF channel to pull the sample UDF file in, and to send the
sample X12 message out (after X12-to-UDF translation). The “pull from path” should
a temporary directory you create, and the file name pattern should be “sample.udf”.
“push to path and name” should be to the same temporary directory, with the name p
(after the last slash character): “/tmp/my_dir/out_udf.{ccc}”.

• Copy the /h/data/global/EC/Messages/Maps/TESTAPI/sample.udf file to this tempor
directory.

• Add a route using the route database window so that all messages received on the
channel will be routed to the TESTAPI UDF channel.

You are now ready to begin the test:

• Turn on the TESTAPI UDF channel to pull in the sample.udf file. This will invoke the
incoming translator, and all the EXIT functions listed in the exitproc.tbl file. Copy the
/h/data/global/EC/Messages/Maps/TESTAPI/results.tbl file to a safe location for anal
(The next translation will overwrite it).
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 65

M APPER’ S GUIDE

lysis.

 to
• Turn on the X12 channel to pull in the sample.x12 file. The router will route it to the
TESTAPI UDF channel. This will invoke the outcoming translator, and all the EXIT
functions listed in the exitproc.tbl file. Copy the
/h/data/global/EC/Messages/Maps/TESTAPI/results.tbl file to a safe location for ana
(The next translation will overwrite it).

Repeat the test runs as many times as you wish by editing the exitproc.tbl input datafile
produce different results.
66 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

M APPER’ S GUIDE
Appendix D Notes
The following acronyms and abbreviations appear in this document:

ADS: Automated Disbursing System

AIS: Automated Information System

ANSI: American National Standards Institute

APADE: Automated Procurement and Accounting Data Entry

API: Application Programming Interface

CAGE: Commercial and Government Entity Code

CCR: Central Contractor Registry

DAPS: Defense Automated Printing System

DIFMS: Defense Industrial Financial Management System

DISA: Defense Information Systems Agency

DODAAC: Department of Defense Activity Address Code

DODAAN: Department of Defense Activity Address Number

DSSN: Disbursing Station Sequence Number

DTS: Defense Travel System

DUNS: Data Universal Numbering System

EC: Electronic Commerce

ECPN: Electronic Commerce Processing Node

EDI: Electronic Data Interchange

FTP: File Transport Protocol

GCN: Group Control Number

GUI: Graphical User Interface

GW: Gateway

HTML: Hypertext Markup Language

ICN: Interchange Control Number

INRI: Inter-National Research Institute

IPC: Integrated Paying and Collecting
MAPPER’ S GUIDE FOR ECPN VERSION 2.2 • MAY 1999 67

M APPER’ S GUIDE
ITIMP: Integrated Technical Item Management and Procurement

MSN: Message Sequence Number

PADDS: Procurement Automated Data and Document System

RFQ: Request for Quotation

SAACONS: Standard Army Accounting and Contracting System

SABRS: Standard Accounting, Budgeting, and Reporting System

SPS: Standard Procurement System

TPDB: Trading Partner Database

UDF: User-Defined File

VAN: Value Added Network
68 MAPPER’S GUIDE FOR ECPN VERSION 2.2 • MAY 1999

ECPN
Document Comment Form

We would like to know your comments and suggestions regarding this document. With your help, we will be able to make
improvements to this and other ECPN documents in the future.

Please rate each of the following items by circling a response:

Please check your response to each of the following items:

6) Does the document contain enough figures/illustrations? ____Yes ____ No
7) Is the level of detail adequate? ____Yes ____ No
8) Does the document meet your needs as a reference guide? ____Yes ____ No

Please respond to each of the following questions:

9) What is missing from this document?

10) What do you like about this document?

11) What do you dislike about this document?

Please enter any additional comments or suggestions in the space below.

Date: __
Name: ___
Position/Title: ___
Address:__
City/State: __

This form is ready to be mailed to the address printed on the reverse. Just fold and seal this form with tape or staples, affix a stamp,
and mail it. Or, if you prefer, place this form in an envelope and address the envelope for mailing.

POOR FAIR GOOD
VERY
GOOD

EXCELLENT

1) Helpfulness 1 2 3 4 5

2) Accuracy 1 2 3 4 5

3) Readability 1 2 3 4 5

4) Organization 1 2 3 4 5

5) Easy to Understand 1 2 3 4 5

FOLD

Documentation Manager
Inter-National Research Institute, Inc.

12350 Jefferson Avenue, Suite 400
Newport News, VA 23602

FOLD

Place
Stamp
Here

	1.0 Document Overview
	2.0 Referenced Documents
	3.0 Translation Overview
	Figure�3�1 Message Exchange
	3.1 Transaction Types
	Table�3�1 Transaction Sets�

	3.2 Maps
	Table�3�2 Translation Map Default Directories�

	3.3 ECPN Translation Programs
	3.4 UDF-to-X12 Translation Basics
	3.4.1 X12 Envelope Information
	Table�3�3 X12 Envelope Information (Continued)

	3.4.2 Envelope Value Generation
	3.4.2.1 Values from Message Content
	3.4.2.2 Values from Databases that Support Translation
	3.4.2.3 Values from Look-up Tables

	3.5 X12-to-UDF Translation Basics
	3.6 Processing Flow
	3.6.1 UDF to X12
	3.6.2 X12 to UDF

	3.7 Admin Message Processing
	3.8 Translation Toolbox

	4.0 Type Tree Construction
	4.1 Document Overview
	4.1.1 ANSI ASC X12 Document
	4.1.2 Implementation Conventions (IC)
	4.1.3 Part 10
	4.1.4 UDF Specifications

	4.2 Creating X12 Type Trees
	Figure�4�1 Delete Subtypes Dialog Box
	Figure�4�2 Merge Type Dialog Box

	4.3 Creating UDF Type Trees
	Figure�4�3 UDF Enveloping Scheme Type Tree Window
	Figure�4�4 Copy Type Tree Dialog Box
	Figure�4�5 Levels of UDF Abstraction
	Figure�4�6 Record Loops
	Figure�4�7 Record Loops in Type Tree
	Figure�4�8 Loop Component List
	Figure�4�9 Composite List Type Tree
	Figure�4�10 Composite Component List

	4.4 Creating Other Type Trees
	4.4.1 Acknowledgments
	Figure�4�11 Example Audit Log
	Figure�4�12 Audit Type Tree
	Figure�4�13 Audit Log Component List
	Figure�4�14 Map Instance Component List
	Figure�4�15 Audit Type Tree Section List
	Figure�4�16 Data Audit Component List
	Figure�4�17 Audit Type Tree Element List
	Figure�4�18 Audit Element Component List
	Figure�4�19 Transaction Component List
	Figure�4�20 Error Component List
	Figure�4�21 Error Detail Component List
	Figure�4�22 Error Record Component List
	Figure�4�23 Audit Type Tree Set List
	Figure�4�24 Composite Error Component List

	4.4.2 Premap Type Trees
	4.4.3 Additional Input Look-up Table Type Trees

	5.0 Map Construction
	5.1 Translating UDF to X12
	5.1.1 Map Naming Conventions
	5.1.2 ISA Segment
	Table�5�1 ISA Segment

	5.1.3 GS Segment
	Table�5�2 GS Segment

	5.1.4 Audit Settings

	5.2 Translating X12 to UDF
	5.2.1 Map Naming Conventions

	5.3 Building the Premap(s)
	5.3.1 The Premap1 Stage
	5.3.2 The Premap Stage
	5.3.2.1 The Premap Index Output File
	5.3.2.2 The Premap UDF Output File

	6.0 Addressing Procedures
	6.1 Implicit Addressing
	6.1.1 UDF-to-X12 Translation
	Table�6�1 Trading Partner Identifier Types and Properties�

	6.1.2 X12-to-UDF Translation
	6.1.3 X12 997 Acknowledgment from X12-to-UDF Translation Audit Log
	6.1.4 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log

	6.2 External Addressing – SAACONS Example
	6.2.1 UDF-to-X12 Translation
	6.2.2 X12 824 Acknowledgment from UDF-to-X12 Translation Audit Log
	6.2.3 X12-to-UDF Translation

	6.3 Combined Implicit/External Addressing – IPC Example
	6.3.1 UDF-to-X12 Translation

	7.0 Integration Procedures
	Appendix A EXIT Functions
	Appendix B Message Description File
	Appendix C TESTAPI Map Family
	Appendix D Notes

